Suppr超能文献

抑制性同步作为注意力增益调制的一种机制。

Inhibitory synchrony as a mechanism for attentional gain modulation.

作者信息

Tiesinga Paul H, Fellous Jean-Marc, Salinas Emilio, José Jorge V, Sejnowski Terrence J

机构信息

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, 27599-3255, USA.

出版信息

J Physiol Paris. 2004 Jul-Nov;98(4-6):296-314. doi: 10.1016/j.jphysparis.2005.09.002. Epub 2005 Nov 7.

Abstract

Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence between spikes and the local field potential (LFP) in the gamma-frequency range (30-50 Hz). The hypothesis explored here is that these observed effects of attention could be a consequence of changes in the synchrony of local interneuron networks. We performed computer simulations of a Hodgkin-Huxley type neuron driven by a constant depolarizing current, I, representing visual stimulation and a modulatory inhibitory input representing the effects of attention via local interneuron networks. We observed that the neuron's firing rate and the coherence of its output spike train with the synaptic inputs was modulated by the degree of synchrony of the inhibitory inputs. When inhibitory synchrony increased, the coherence of spiking model neurons with the synaptic input increased, but the firing rate either increased or remained the same. The mean number of synchronous inhibitory inputs was a key determinant of the shape of the firing rate versus current (f-I) curves. For a large number of inhibitory inputs (approximately 50), the f-I curve saturated for large I and an increase in input synchrony resulted in a shift of sensitivity-the model neuron responded to weaker inputs I. For a small number (approximately 10), the f-I curves were non-saturating and an increase in input synchrony led to an increase in the gain of the response-the firing rate in response to the same input was multiplied by an approximately constant factor. The firing rate modulation with inhibitory synchrony was highest when the input network oscillated in the gamma frequency range. Thus, the observed changes in firing rate and coherence of neurons in the visual cortex could be controlled by top-down inputs that regulated the coherence in the activity of a local inhibitory network discharging at gamma frequencies.

摘要

对猴子V4区的记录显示,当注意力集中在皮层神经元感受野内的视觉刺激上时,会出现两种不同的变化:神经元的放电率会改变,并且在伽马频率范围(30 - 50赫兹)内,尖峰与局部场电位(LFP)之间的相干性会增加。这里探讨的假设是,这些观察到的注意力效应可能是局部中间神经元网络同步性变化的结果。我们对一个由恒定去极化电流I驱动的霍奇金 - 赫胥黎型神经元进行了计算机模拟,I代表视觉刺激,一个调制性抑制输入代表通过局部中间神经元网络产生的注意力效应。我们观察到,神经元的放电率及其输出尖峰序列与突触输入的相干性受到抑制性输入同步程度的调制。当抑制性同步增加时,尖峰模型神经元与突触输入的相干性增加,但放电率要么增加要么保持不变。同步抑制输入的平均数量是放电率与电流(f - I)曲线形状的关键决定因素。对于大量抑制性输入(约50个),当I较大时f - I曲线饱和,输入同步性增加会导致敏感性发生变化——模型神经元对较弱的输入I做出反应。对于少量(约10个)抑制性输入,f - I曲线不饱和,输入同步性增加会导致反应增益增加——对相同输入的放电率乘以一个近似恒定的因子。当输入网络在伽马频率范围内振荡时,抑制性同步对放电率的调制最高。因此,视觉皮层中观察到的神经元放电率和相干性变化可能受自上而下的输入控制,这些输入调节了在伽马频率下放电的局部抑制网络活动的相干性。

相似文献

1
Inhibitory synchrony as a mechanism for attentional gain modulation.
J Physiol Paris. 2004 Jul-Nov;98(4-6):296-314. doi: 10.1016/j.jphysparis.2005.09.002. Epub 2005 Nov 7.
2
Stimulus competition by inhibitory interference.
Neural Comput. 2005 Nov;17(11):2421-53. doi: 10.1162/0899766054796905.
3
Attentional modulation of firing rate and synchrony in a model cortical network.
J Comput Neurosci. 2006 Jun;20(3):247-64. doi: 10.1007/s10827-006-6358-0. Epub 2006 Apr 22.
4
Rapid temporal modulation of synchrony by competition in cortical interneuron networks.
Neural Comput. 2004 Feb;16(2):251-75. doi: 10.1162/089976604322742029.
5
Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron.
Neural Netw. 2006 Nov;19(9):1329-46. doi: 10.1016/j.neunet.2006.08.005. Epub 2006 Oct 5.
7
Synchronization as a mechanism for attentional gain modulation.
Neurocomputing (Amst). 2004 Jun 1;58-60:641-646. doi: 10.1016/j.neucom.2004.01.108.
8
Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
J Neurosci. 2015 Jul 15;35(28):10236-51. doi: 10.1523/JNEUROSCI.0828-15.2015.
9
Role of interneuron diversity in the cortical microcircuit for attention.
J Neurophysiol. 2008 May;99(5):2158-82. doi: 10.1152/jn.01004.2007. Epub 2008 Feb 20.

引用本文的文献

3
A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection.
J Neurosci. 2022 Nov 2;42(44):8262-8283. doi: 10.1523/JNEUROSCI.0164-22.2022. Epub 2022 Sep 19.
4
The role of gamma oscillations in central nervous system diseases: Mechanism and treatment.
Front Cell Neurosci. 2022 Jul 29;16:962957. doi: 10.3389/fncel.2022.962957. eCollection 2022.
5
Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss.
Front Neurosci. 2022 Feb 10;16:799787. doi: 10.3389/fnins.2022.799787. eCollection 2022.
6
Cortical oscillatory dysrhythmias in visual snow syndrome: a magnetoencephalography study.
Brain Commun. 2021 Dec 18;4(1):fcab296. doi: 10.1093/braincomms/fcab296. eCollection 2022.
8
Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons.
Biol Cybern. 2021 Oct;115(5):487-517. doi: 10.1007/s00422-021-00894-6. Epub 2021 Oct 9.

本文引用的文献

1
Synchronization as a mechanism for attentional gain modulation.
Neurocomputing (Amst). 2004 Jun 1;58-60:641-646. doi: 10.1016/j.neucom.2004.01.108.
2
Rapid temporal modulation of synchrony by competition in cortical interneuron networks.
Neural Comput. 2004 Feb;16(2):251-75. doi: 10.1162/089976604322742029.
4
Differential arithmetic of shunting inhibition for voltage and spike rate in neocortical pyramidal cells.
Eur J Neurosci. 2003 Oct;18(8):2159-65. doi: 10.1046/j.1460-9568.2003.02942.x.
5
Multiplicative gain changes are induced by excitation or inhibition alone.
J Neurosci. 2003 Nov 5;23(31):10040-51. doi: 10.1523/JNEUROSCI.23-31-10040.2003.
8
Is synchronized neuronal gamma activity relevant for selective attention?
Brain Res Brain Res Rev. 2003 Jun;42(3):265-72. doi: 10.1016/s0165-0173(03)00178-4.
9
Shunting inhibition modulates neuronal gain during synaptic excitation.
Neuron. 2003 May 8;38(3):433-45. doi: 10.1016/s0896-6273(03)00200-9.
10
Interacting roles of attention and visual salience in V4.
Neuron. 2003 Mar 6;37(5):853-63. doi: 10.1016/s0896-6273(03)00097-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验