Suppr超能文献

一种新发现的氧化防御系统及其在海月水母(钵水母纲,刺胞动物门)发育中的作用:活性氧和元素碘控制水母的形成。

A newly discovered oxidant defence system and its involvement in the development of Aurelia aurita (Scyphozoa, Cnidaria): reactive oxygen species and elemental iodine control medusa formation.

作者信息

Berking Stefan, Czech Nicole, Gerharz Melanie, Herrmann Klaus, Hoffmann Uwe, Raifer Hartmann, Sekul Guy, Siefker Barbara, Sommerei Andrea, Vedder Fritz

机构信息

Zoological Institute, University of Cologne, Köln, Germany.

出版信息

Int J Dev Biol. 2005;49(8):969-76. doi: 10.1387/ijdb.052024sb.

Abstract

In Aurelia aurita, applied iodine induces medusa formation (strobilation). This process also occurs when the temperature is lowered. This was found to increase oxidative stress resulting in an increased production of iodine from iodide. One polyp produces several medusae (initially termed ephyrae) starting at the polyp's oral end. The spreading of strobilation down the body column is controlled by a feedback loop: ephyra anlagen decrease the tyrosine content in adjacent polyp tissue by producing melanin from tyrosine. Endogenous tyrosine is able to remove iodine by forming iodiferous tyrosine compounds. The reduced level of tyrosine causes the ephyra-polyp-border to move towards the basal end of the former polyp. We argue that an oxidant defence system may exist which makes use of iodide and tyrosine. Like other marine invertebrates, polyps of Aurelia contain iodide ions. Inevitably produced peroxides oxidise iodide into iodine. The danger to be harmed by iodine is strongly decreased by endogenous tyrosine which reacts with iodine to form iodiferous tyrosine compounds including thyroxin. Both substances together, iodide and tyrosine, form an efficient oxidant defence system which shields the tissue against damage by reactive oxygen species. In the course of evolution (from a species at the basis of the animal kingdom like Aurelia to a highly evolved species like man) the waste product thyroxin (indicating a high metabolic rate) has developed into a hormone which controls the metabolic rate.

摘要

在海月水母中,施加碘会诱导水母体形成(横裂生殖)。温度降低时这个过程也会发生。研究发现这会增加氧化应激,导致碘从碘化物中生成增加。一个水螅体从其口端开始会产生几个水母体(最初称为碟状幼体)。横裂生殖沿体柱向下扩散受一个反馈回路控制:碟状幼体原基通过从酪氨酸生成黑色素来降低相邻水螅体组织中的酪氨酸含量。内源性酪氨酸能够通过形成含碘酪氨酸化合物来去除碘。酪氨酸水平的降低导致碟状幼体 - 水螅体边界朝着原来水螅体的基部移动。我们认为可能存在一种利用碘化物和酪氨酸的抗氧化防御系统。与其他海洋无脊椎动物一样,海月水母的水螅体含有碘离子。不可避免产生的过氧化物将碘化物氧化成碘。内源性酪氨酸与碘反应形成包括甲状腺素在内的含碘酪氨酸化合物,从而大大降低了被碘伤害的风险。碘化物和酪氨酸这两种物质共同构成了一个有效的抗氧化防御系统,保护组织免受活性氧的损伤。在进化过程中(从像海月水母这样处于动物界基础地位的物种到像人类这样高度进化的物种),废物甲状腺素(表明高代谢率)已发展成为一种控制代谢率的激素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验