Arévalo Juan Carlos, Pereira Daniela B, Yano Hiroko, Teng Kenneth K, Chao Moses V
Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, NY 10016, USA.
J Biol Chem. 2006 Jan 13;281(2):1001-7. doi: 10.1074/jbc.M504163200. Epub 2005 Nov 11.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.
神经营养因子,如神经生长因子和脑源性神经营养因子,通过在细胞表面的受体二聚化激活Trk受体酪氨酸激酶,随后进行自磷酸化并招募细胞内信号分子。神经营养因子所使用的细胞内信号通路共享许多其他受体酪氨酸激酶(RTK)所使用的常见蛋白质底物,如Shc、Grb2、FRS2和磷脂酶C-γ。在这里,我们描述了一种新的RTK机制,该机制涉及一种220千道尔顿的跨膜四次蛋白ARMS/Kidins220,在神经营养因子处理后,原代神经元中的该蛋白会迅速发生酪氨酸磷酸化。ARMS/Kidins220会经历多个酪氨酸磷酸化事件,并且还会被蛋白激酶D进行丝氨酸磷酸化。我们已经确定ARMS/Kidins220中的单个酪氨酸(Tyr(109))磷酸化事件在神经营养因子信号传导中起关键作用。ARMS/Kidins220和CrkL(C3G-Rap1-MAP激酶级联的上游成分)的重组复合物是SH3依赖性的。然而,Tyr(1096)磷酸化使ARMS/Kidins220能够通过其SH2结构域招募CrkL,从而使CrkL的SH3结构域能够以神经营养因子依赖性方式与C3G结合以激活MAP激酶。因此,Tyr(1096)的突变消除了CrkL相互作用并维持了MAPK激酶活性,这种反应在其他RTK中通常不会观察到。因此,Trk受体信号传导涉及一种通过非常规底物的诱导性开关机制,该机制将神经营养因子作用与其他生长因子受体区分开来。