Yin Jiang, Bergmann Ernst M, Cherney Maia M, Lall Manjinder S, Jain Rajendra P, Vederas John C, James Michael N G
CIHR Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
J Mol Biol. 2005 Dec 9;354(4):854-71. doi: 10.1016/j.jmb.2005.09.074. Epub 2005 Oct 14.
Hepatitis A virus (HAV) 3C proteinase is a member of the picornain cysteine proteases responsible for the processing of the viral polyprotein, a function essential for viral maturation and infectivity. This and its structural similarity to other 3C and 3C-like proteases make it an attractive target for the development of antiviral drugs. Previous solution NMR studies have shown that a Cys24Ser (C24S) variant of HAV 3C protein, which displays catalytic properties indistinguishable from the native enzyme, is irreversibly inactivated by N-benzyloxycarbonyl-l-serine-beta-lactone (1a) through alkylation of the sulfur atom at the active site Cys172. However, crystallization of an enzyme-inhibitor adduct from the reaction mixture followed by X-ray structural analysis shows only covalent modification of the epsilon2-nitrogen of the surface His102 by the beta-lactone with no reaction at Cys172. Re-examination of the heteronuclear multiple quantum coherence (HMQC) NMR spectra of the enzyme-inhibitor mixture indicates that dual modes of single covalent modification occur with a >/=3:1 ratio of S-alkylation of Cys172 to N-alkylation of His102. The latter product crystallizes readily, probably due to the interaction between the phenyl ring of the N-benzyloxycarbonyl (N-Cbz) moiety and a hydrophobic pocket of a neighboring protein molecule in the crystal. Furthermore, significant structural changes are observed in the active site of the 3C protease, which lead to the formation of a functional catalytic triad with Asp84 accepting one hydrogen bond from His44. Although the 3C protease modified at Cys172 is catalytically inactive, the singly modified His102 N(epsilon2)-alkylated protein displays a significant level of enzymatic activity, which can be further modified/inhibited by N-iodoacetyl-valine-phenylalanine-amide (IVF) (in solution and in crystal) or excessive amount of the same beta-lactone inhibitor (in solution). The success of soaking IVF into HAV 3C-1a crystals demonstrates the usefulness of this new crystal form in the study of enzyme-inhibitor interactions in the proteolytic active site.
甲型肝炎病毒(HAV)3C蛋白酶是微小RNA病毒半胱氨酸蛋白酶家族的成员,负责处理病毒多聚蛋白,这一功能对病毒成熟和感染性至关重要。它与其他3C及3C样蛋白酶的结构相似性使其成为开发抗病毒药物的一个有吸引力的靶点。先前的溶液核磁共振研究表明,HAV 3C蛋白的Cys24Ser(C24S)变体表现出与天然酶难以区分的催化特性,它会被N-苄氧羰基-L-丝氨酸-β-内酯(1a)通过活性位点Cys172处硫原子的烷基化而不可逆地失活。然而,从反应混合物中结晶出酶-抑制剂加合物并进行X射线结构分析后发现,β-内酯仅对表面His102的ε2-氮进行了共价修饰,而Cys172处没有反应。对酶-抑制剂混合物异核多量子相干(HMQC)核磁共振谱的重新检查表明,发生了单共价修饰的双重模式,Cys172的S-烷基化与His102的N-烷基化比例≥3:1。后一种产物很容易结晶,这可能是由于N-苄氧羰基(N-Cbz)部分的苯环与晶体中相邻蛋白质分子的疏水口袋之间的相互作用。此外,在3C蛋白酶的活性位点观察到显著的结构变化,导致形成了一个功能性催化三联体,其中Asp84接受来自His44的一个氢键。虽然在Cys172处修饰的3C蛋白酶没有催化活性,但单修饰的His102 N(ε2)-烷基化蛋白显示出显著水平的酶活性,其可以被N-碘乙酰基-缬氨酸-苯丙氨酸-酰胺(IVF)(在溶液中和晶体中)或过量的相同β-内酯抑制剂(在溶液中)进一步修饰/抑制。将IVF浸泡到HAV 3C-1a晶体中的成功证明了这种新晶体形式在研究蛋白水解活性位点中酶-抑制剂相互作用方面的有用性。