Camp Shelley, Zhang Limin, Marquez Michael, de la Torre Brian, Long Jeffery M, Bucht Goran, Taylor Palmer
University of California, San Diego, 9500 Gilman Dr., Department of Pharmacology, La Jolla, CA 92093-0636, USA.
Chem Biol Interact. 2005 Dec 15;157-158:79-86. doi: 10.1016/j.cbi.2005.10.012. Epub 2005 Nov 9.
AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B. delaTorre, P. Taylor, Knockout mice with deletions of alternatively spliced exons of Acetylcholinesterase, in: N.C. Inestrosa, E.O. Campus (Eds.), VII International Meeting on Cholinesterases, Pucon-Chile Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects. P. Universidad Catholica de Chile-FONDAP Biomedicina, 2004, pp. 43-48; R.Y.Y. Chan, C. Boudreau-Larivière, L.A. Angus, F. Mankal, B.J. Jasmin, An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 96 (1999) 4627-4632], is also presented. The intronic region was floxed and then deleted by mating with Ella-cre transgenic mice. The deletion of this region produced a dramatic phenotype; a mouse with near normal AChE expression in brain and other CNS tissues, but no AChE expression in muscle. Phenotype and AChE tissue activities are compared with the total AChE knockout mouse [W. Xie, J.A. Chatonnet, P.J. Wilder, A. Rizzino, R.D. McComb, P. Taylor, S.H. Hinrichs, O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293 (3) (2000) 896-902].
乙酰胆碱酯酶(AChE)是一个可变剪接基因。外显子2、3和4的剪接是固定不变的,该序列负责催化功能。3'端的可变剪接外显子5和6决定了AChE在组织中的分布[J. 马苏利,胆碱酯酶分子多样性的起源和功能定位。神经信号 11 (3) (2002) 130 - 143;Y. 李、S. 坎普、P. 泰勒,哺乳动物乙酰胆碱酯酶基因的组织特异性表达和mRNA的可变加工。生物化学杂志 268 (8) (1993) 5790 - 5797]。剪接到外显子5会产生造血系统中发现的糖基磷脂酰肌醇(GPI)锚定形式的AChE,而剪接到外显子6会产生与结构亚基PRiMA和ColQ结合的序列,从而在脑和肌肉中产生AChE表达。还存在第三种可变RNA种类,其3'端未进行剪接;外显子4的内含子3'用作编码序列,并产生通读的、无锚定形式的AChE。为了进一步了解可变剪接在AChE基因表达中的作用,我们利用干细胞中的同源重组在小鼠中产生基因特异性缺失。外显子5和外显子6被单独或一起删除。使用一个含有两侧带有loxP位点的新霉素基因的盒式结构来替换感兴趣的外显子。对删除外显子5并保留新霉素盒式结构的小鼠进行组织分析,结果显示AChE表达水平非常低,远低于预期。仅产生了该酶的通读种类;显然,选择盒式结构的插入破坏了外显子4到外显子6的剪接。然后通过与Ella - cre转基因小鼠杂交,在删除外显子5、外显子6以及外显子5 + 6的小鼠中删除选择盒式结构。分析了血清、脑和肌肉中的AChE表达。还展示了另一种靶向AChE基因的小鼠品系,该品系涉及第一个内含子中的一个区域,发现该区域对肌肉细胞中AChE的表达至关重要[S. 坎普、L. 张、M. 马尔克斯、B. 德拉托雷、P. 泰勒,乙酰胆碱酯酶可变剪接外显子缺失的基因敲除小鼠,载于:N.C. 伊内斯特罗萨、E.O. 坎波斯(编),第七届国际胆碱酯酶会议,智利普孔 - 千年之交的胆碱酯酶:生物分子和病理方面。智利天主教大学 - FONDAP生物医学,2004,第43 - 48页;R.Y.Y. 陈、C. 布德罗 - 拉里维耶、L.A. 安格斯、F. 曼卡尔、B.J. 贾斯敏,骨骼肌纤维中乙酰胆碱酯酶基因的突触和组织特异性表达需要一个含有N - 盒基序的内含子增强子。美国国家科学院院刊 96 (1999) 4627 - 4632]。该内含子区域被进行了floxed操作,然后通过与Ella - cre转基因小鼠交配将其删除。该区域的删除产生了显著的表型;一只小鼠在脑和其他中枢神经系统组织中的AChE表达接近正常,但在肌肉中无AChE表达。将该表型和AChE组织活性与完全敲除AChE基因的小鼠[W. 谢、J.A. 沙托内、P.J. 怀尔德、A. 里齐诺、R.D. 麦科姆、P. 泰勒、S.H. 欣里克斯、O. 洛克里奇,缺乏乙酰胆碱酯酶的基因靶向小鼠的产后发育延迟和对有机磷的超敏反应。药理学与实验治疗学杂志 293 (3) (2000) 896 - 902]进行了比较。