Suppr超能文献

带有或不带有表面电荷支撑的带电开尔文流体薄片的剪切不稳定性。

Instability for shearing of an electrified Kelvin fluid sheet with or without supporting surface charges.

作者信息

El-Dib Yusry O

机构信息

Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt.

出版信息

J Colloid Interface Sci. 2002 Jun 15;250(2):344-63. doi: 10.1006/jcis.2002.8322.

Abstract

The present study demonstrates the instability of streaming in a fluid layer sandwiched between two other bounded fluids under the influence of a vertical periodic electric field. The fluids are of a viscoelastic nature where the constitutive equation is Kelvin type. Due to the inclusion of streaming flow and the influence of a periodic force, a mathematical simplification is urged. Equation of motion is solved in light of the weakness effect for the viscoelastic properties. The instabilization of the problem is examined in view of the linearization of the perturbation approach. The boundary value problem is discussed for a charged or uncharged fluid sheet. Both cases are lead to derive linear coupled Mathieu equations with complex coefficients and damping terms. Stability analysis is discussed through a simplified configuration for the system of Mathieu equations. It is found that the elasticity parameters as well as the viscosity parameters have a stabilizing influence. The field frequency plays a destabilizing role in the presence of surface charges and a dual role in the absence of surface charges. The presence of surface charges retards the stabilizing influence of the viscoelastic effects. This calculation shows that the fluid velocity retards the destabilizing influence for the electric field. The increase of the thickness of the fluid sheet plays two different roles. A stabilizing role in the presence of surface charges and a destabilizing influence in their absence.

摘要

本研究证明了在垂直周期性电场影响下,夹在另外两种有界流体之间的流体层中流动的不稳定性。这些流体具有粘弹性,其本构方程为开尔文型。由于包含了流动以及周期性力的影响,需要进行数学简化。根据粘弹性特性的微弱效应求解运动方程。从微扰方法的线性化角度研究了该问题的不稳定性。讨论了带电或不带电流体片的边值问题。两种情况都导致推导出具有复系数和阻尼项的线性耦合马蒂厄方程。通过对马蒂厄方程组的简化配置讨论稳定性分析。发现弹性参数和粘度参数具有稳定作用。在存在表面电荷的情况下,场频率起破坏稳定的作用,而在不存在表面电荷的情况下起双重作用。表面电荷的存在阻碍了粘弹性效应的稳定作用。该计算表明流体速度阻碍了电场的破坏稳定作用。流体片厚度的增加起到两种不同的作用。在存在表面电荷时起稳定作用,在不存在表面电荷时起破坏稳定作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验