López-García José Juan, Horno José, Grosse Constantino
Departamento de Física, Universidad de Jaén, Facultad de Ciencias Experimentales, Campus de las Lagunillas, Ed. B-3, Jaén, 23071, Spain.
J Colloid Interface Sci. 2002 Jul 1;251(1):85-93. doi: 10.1006/jcis.2002.8396.
The Poisson-Boltzmann equation is numerically solved for a spherical cavity filled with a charged electrolyte solution. The network method used makes it possible to solve the problem in the most general case: the electrolyte solution can have any number of ion types with valences having any value. Furthermore, no a priori assumption concerning electroneutrality at the center of the cavity is required. Electric potential and ion concentration profiles, as well as the total potential drop in the cavity, are calculated for different system parameter values. These results are discussed and compared to the corresponding results obtained for suspended particles. Important differences arise, except for very thin double layers. For instance, the usual definition of the Debye length can no longer be used, since the electrolyte solution is nonneutral in the whole volume of the cavity. Furthermore, the charge density at the center of the cavity cannot be assigned any arbitrary value, since the charge density and the ion densities are no longer independent quantities.
针对充满带电电解质溶液的球形腔,对泊松 - 玻尔兹曼方程进行了数值求解。所采用的网络方法使得在最一般的情况下解决该问题成为可能:电解质溶液可以具有任意数量的离子类型,其价态可以为任意值。此外,无需对腔中心的电中性做先验假设。针对不同的系统参数值,计算了电势和离子浓度分布,以及腔内的总电势降。对这些结果进行了讨论,并与悬浮颗粒的相应结果进行了比较。除了非常薄的双层情况外,出现了重要差异。例如,德拜长度的通常定义不再适用,因为电解质溶液在腔的整个体积内是非中性的。此外,腔中心的电荷密度不能赋予任意值,因为电荷密度和离子密度不再是独立的量。