Suppr超能文献

用于药物基因组学研究中检测基因-基因和基因-环境相互作用的多因素降维法

Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies.

作者信息

Ritchie Marylyn D, Motsinger Alison A

机构信息

Vanderbilt University Medical Center, Department of Molecular Physiology & Biophysics, 519 Light Hall, Center for Human Genetics Research, Nashville, TN 37232-0700, USA.

出版信息

Pharmacogenomics. 2005 Dec;6(8):823-34. doi: 10.2217/14622416.6.8.823.

Abstract

In the quest for discovering disease susceptibility genes, the reality of gene-gene and gene-environment interactions creates difficult challenges for many current statistical approaches. In an attempt to overcome limitations with current disease gene detection methods, the multifactor dimensionality reduction (MDR) approach was previously developed. In brief, MDR is a method that reduces the dimensionality of multilocus information to identify polymorphisms associated with an increased risk of disease. This approach takes multilocus genotypes and develops a model for defining disease risk by pooling high-risk genotype combinations into one group and low-risk combinations into another. Cross-validation and permutation testing are used to identify optimal models. While this approach was initially developed for studies of complex disease, it is also directly applicable to pharmacogenomic studies where the outcome variable is drug treatment response/nonresponse or toxicity/no toxicity. MDR is a nonparametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. This computational technology is described in detail in this review, and its application in pharmacogenomic studies is demonstrated.

摘要

在探索疾病易感基因的过程中,基因与基因以及基因与环境相互作用的现实给许多当前的统计方法带来了严峻挑战。为了克服当前疾病基因检测方法的局限性,之前开发了多因素降维(MDR)方法。简而言之,MDR是一种降低多位点信息维度以识别与疾病风险增加相关的多态性的方法。该方法采用多位点基因型,通过将高风险基因型组合归为一组、低风险组合归为另一组来建立定义疾病风险的模型。交叉验证和置换检验用于识别最优模型。虽然这种方法最初是为复杂疾病研究而开发的,但它也直接适用于药物基因组学研究,其中的结果变量是药物治疗反应/无反应或毒性/无毒性。MDR是一种非参数且无模型的方法,在理论和实证研究中均已显示出具有合理的检测上位性的能力。本文详细介绍了这种计算技术,并展示了其在药物基因组学研究中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验