Tessier François, Fontaine-Bisson Bénédicte, Lefebvre Jean-François, El-Sohemy Ahmed, Roy-Gagnon Marie-Hélène
School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
Front Genet. 2019 Mar 4;10:151. doi: 10.3389/fgene.2019.00151. eCollection 2019.
Animal studies suggested that , , and genes could be involved in the association between overnutrition and obesity. This study aims to investigate interactions involving these genes and macronutrient intakes affecting obesity-related phenotypes. We used a traditional statistical method, logistic regression, and compared it to alternative statistical method, multifactor dimensionality reduction (MDR) and penalized logistic regression (PLR), to better detect genes/environment interactions in the Toronto Nutrigenomics and Health Study ( = 1639) using dichotomized body mass index (BMI) and waist circumference as obesity-related phenotypes. Exposure variables included genotype on 54 single nucleotide polymorphisms (: 18, : 9, : 27), macronutrient (carbohydrates, protein, fat) and alcohol intakes and ethno-cultural background. After correction for multiple testing, no interaction was found using logistic regression. MDR identified interactions between SOCS3 rs6501199 and rs4969172, and rs3747811 affecting BMI in the Caucasian population; SOCS3 rs6501199 and rs1609798 affecting WC in the Caucasian population; and SOCS3 rs4436839 and IKBKB rs3747811 affecting WC in the South Asian population. PLR found a main effect of SOCS3 rs12944581 on BMI among the South Asian population. While MDR and PLR had discordant results, some models support results from previous studies. These results emphasize the need to use alternative statistical methods to investigate high-order interactions and suggest that variants in the nutrient-responsive hypothalamic IKKB/NF-kB signaling pathway may be involved in obesity pathogenesis.
动物研究表明, 、 和 基因可能与营养过剩和肥胖之间的关联有关。本研究旨在调查涉及这些基因与影响肥胖相关表型的常量营养素摄入之间的相互作用。我们使用了一种传统的统计方法——逻辑回归,并将其与另一种统计方法——多因素降维法(MDR)和惩罚逻辑回归(PLR)进行比较,以便在多伦多营养基因组学与健康研究( = 1639)中,使用二分法体重指数(BMI)和腰围作为肥胖相关表型,更好地检测基因/环境相互作用。暴露变量包括54个单核苷酸多态性的基因型( :18个, :9个, :27个)、常量营养素(碳水化合物、蛋白质、脂肪)和酒精摄入量以及种族文化背景。经过多重检验校正后,使用逻辑回归未发现相互作用。MDR在白种人群中识别出SOCS3 rs6501199与rs4969172之间以及 rs3747811与影响BMI的相互作用;在白种人群中识别出SOCS3 rs6501199与 rs1609798之间影响WC的相互作用;在南亚人群中识别出SOCS3 rs4436839与IKBKB rs3747811之间影响WC的相互作用。PLR发现SOCS3 rs12944581在南亚人群中对BMI有主要影响。虽然MDR和PLR的结果不一致,但一些模型支持先前研究的结果。这些结果强调需要使用替代统计方法来研究高阶相互作用,并表明营养反应性下丘脑IKKB/NF-κB信号通路中的变体可能参与肥胖发病机制。