van Wüllen Christoph
Institut für Chemie Sekr. C3, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
J Comput Chem. 2006 Jan 30;27(2):135-41. doi: 10.1002/jcc.20325.
Steep high angular momentum Gaussian basis functions in the vicinity of a nucleus whose inner electrons are replaced by an effective core potential may lead to numerical instabilities when calculating matrix elements of the core potential. Numerical roundoff errors may be amplified to an extent that spoils any result obtained in such a calculation. Effective core potential matrix elements for a model problem are computed with high numerical accuracy using the standard algorithm used in quantum chemical codes and compared to results of the MOLPRO program. Thus, it is demonstrated how the relative and absolute errors depend an basis function angular momenta, basis function exponents and the distance between the off-center basis function and the center carrying the effective core potential. Then, the problem is analyzed and closed expressions are derived for the expected numerical error in the limit of large basis function exponents. It is briefly discussed how other algorithms would behave in the critical case, and they are found to have problems as well. The numerical stability could be increased a little bit if the type 1 matrix elements were computed without making use of a partial wave expansion.
在原子核附近,当内部电子被有效核势取代时,陡峭的高角动量高斯基函数在计算核势的矩阵元时可能会导致数值不稳定性。数值舍入误差可能会被放大到破坏在此类计算中获得的任何结果的程度。使用量子化学代码中使用的标准算法,以高数值精度计算模型问题的有效核势矩阵元,并与MOLPRO程序的结果进行比较。因此,证明了相对误差和绝对误差如何取决于基函数角动量、基函数指数以及离中心基函数与携带有效核势的中心之间的距离。然后,对该问题进行分析,并在大基函数指数的极限情况下推导出预期数值误差的封闭表达式。简要讨论了其他算法在临界情况下的表现,发现它们也存在问题。如果在不使用分波展开的情况下计算1型矩阵元,数值稳定性可以略有提高。