Suppr超能文献

具有非正交轨道和非厄米算符的密度矩阵重整化群算法及其在多烯中的应用。

Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes.

作者信息

Chan Garnet Kin-Lic, Van Voorhis Troy

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.

出版信息

J Chem Phys. 2005 May 22;122(20):204101. doi: 10.1063/1.1899124.

Abstract

We describe the theory and implementation of two extensions to the density-matrix renormalization-group (DMRG) algorithm in quantum chemistry: (i) to work with an underlying nonorthogonal one-particle basis (using a biorthogonal formulation) and (ii) to use non-Hermitian and complex operators and complex wave functions, which occur naturally in biorthogonal formulations. Using these developments, we carry out ground-state calculations on ethene, butadiene, and hexatriene, in a polarized atomic-orbital basis. The description of correlation in these systems using a localized nonorthogonal basis is improved over molecular-orbital DMRG calculations, and comparable to or better than coupled-cluster calculations, although we encountered numerical problems associated with non-Hermiticity. We believe that the non-Hermitian DMRG algorithm may further become useful in conjunction with other non-Hermitian Hamiltonians, for example, similarity-transformed coupled-cluster Hamiltonians.

摘要

我们描述了量子化学中密度矩阵重整化群(DMRG)算法的两种扩展的理论和实现:(i)使用双正交公式在底层非正交单粒子基下工作,以及(ii)使用非厄米和复算符以及复波函数,这些在双正交公式中自然出现。利用这些进展,我们在极化原子轨道基下对乙烯、丁二烯和己三烯进行了基态计算。尽管我们遇到了与非厄米性相关的数值问题,但使用局域非正交基对这些体系中的关联进行描述,相较于分子轨道DMRG计算有了改进,并且与耦合簇计算相当或更好。我们相信非厄米DMRG算法与其他非厄米哈密顿量(例如相似变换耦合簇哈密顿量)结合可能会进一步发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验