Chan Garnet Kin-Lic, Van Voorhis Troy
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.
J Chem Phys. 2005 May 22;122(20):204101. doi: 10.1063/1.1899124.
We describe the theory and implementation of two extensions to the density-matrix renormalization-group (DMRG) algorithm in quantum chemistry: (i) to work with an underlying nonorthogonal one-particle basis (using a biorthogonal formulation) and (ii) to use non-Hermitian and complex operators and complex wave functions, which occur naturally in biorthogonal formulations. Using these developments, we carry out ground-state calculations on ethene, butadiene, and hexatriene, in a polarized atomic-orbital basis. The description of correlation in these systems using a localized nonorthogonal basis is improved over molecular-orbital DMRG calculations, and comparable to or better than coupled-cluster calculations, although we encountered numerical problems associated with non-Hermiticity. We believe that the non-Hermitian DMRG algorithm may further become useful in conjunction with other non-Hermitian Hamiltonians, for example, similarity-transformed coupled-cluster Hamiltonians.
我们描述了量子化学中密度矩阵重整化群(DMRG)算法的两种扩展的理论和实现:(i)使用双正交公式在底层非正交单粒子基下工作,以及(ii)使用非厄米和复算符以及复波函数,这些在双正交公式中自然出现。利用这些进展,我们在极化原子轨道基下对乙烯、丁二烯和己三烯进行了基态计算。尽管我们遇到了与非厄米性相关的数值问题,但使用局域非正交基对这些体系中的关联进行描述,相较于分子轨道DMRG计算有了改进,并且与耦合簇计算相当或更好。我们相信非厄米DMRG算法与其他非厄米哈密顿量(例如相似变换耦合簇哈密顿量)结合可能会进一步发挥作用。