Varga János, Boda Krisztina, Somfay Attila
Szegedi Tudományegyetem, Szent-Györgyi Albert Orvos- es Gógyszerésztudományi Centrum, Altalános Orvostudományi Kar, Tüdogyógyászati Tanszék, Csongrád Megyei Onkormányzat Mellkasi Betegségek Szakkórháza, I. Tüdoosztály, Deszk.
Orv Hetil. 2005 Oct 30;146(44):2249-55.
Pulmonary rehabilitation has become a part of the integrated management of patients with chronic obstructive pulmonary disease (COPD). The lower extremity dynamic training has been proved to be the most effective element of the program.
Does the supervised training have more favorable effect in case of similar program?
In two groups: 54 patients, supervised (group K, n = 22) and not supervised (group NK, n = 32) by physiotherapists, chosen at random have been investigated. Both groups consisted of hospitalized patients of the same severity (forced expiratory volume in one second) [FEV1 (average +/- SD)]: K: 51.0 +/- 16.1 vs. NK: 51.9 +/- 15.6% pred). Group K performed physiotherapist-supervised cycling training in the Pulmonology Ambulance Unit 3-4 times a week for 45 minutes doing an 8-week period and group NK performed training in the form of cycling, stepping on stairs or dynamic walking at home with the same duration, weekly periodicity and time interval.
After rehabilitation vital capacity (VC) (K: 3.0 +/- 0.8 vs. 3.3 +/- 0.7 l, p < 0.05), emphysema ratio (RV/TLC): K: 53.5 +/- 10.1 vs. 51.6 +/- 9.9, p < 0.05) in the supervised group, and alveolar volume (VA) in the not supervised group (NK: 4.3 +/- 0.9 vs. 4.7 +/- 0.9 l, p < 0.05) significantly improved. Improvement of exercise capacity was more effective in group K (K: 92.7 +/- 33.9 vs. 106.4 +/- 34.5 W, p < 0.001; NK: 95.8 +/- 36.7 vs. 99.9 +/- 35.1 W, p < 0.05). In both groups aerobic capacity (VO2: K: 1.2 +/- 0.4 vs. 1.3 +/- 0.4 l/min, p < 0.01, NK: 1.1 +/- 0.4 vs. 1.2 +/- 0.4 l/min, p < 0.01; VO2/kg: K: 16.1 +/- 5.5 vs. 17.5 +/- 5.8 ml/kg/mm, p < 0.01, NK: 16.2 +/- 5.3 vs. 16.7 +/- 4.8 ml/kg/ min, p < 0.01) and anaerobic threshold level [AT (pred VO2%)] (K: 36.6 +/- 9.8 vs. 42.8 +/- 10.2%, p < 0.001; NK: 40.8 +/- 12.0 vs. 44.6 + 11.6%, p < 0.001) significantly improved. Heart rate reserve: (K: 17.7 +/- 22.7 vs. 28.8 +/- 31.5 l/min, p < 0.01; NK: 20.4 +/- 21.2 vs. 25.0 +/- 21.6 l/min, p < 0.01) improved at the same level of exercise. The Borg scale of dyspnea (0-10): (K: 6.4 +/- 2.5 vs. 5.7 +/- 2.7, p < 0.05; NK: 7.5 +/- 1.8 vs. 6.9 +/- 2.2, p < 0.05) was reduced and quality of life score (0-24): K: 11.5 +/- 0.7 vs. 9.0 +/- 2.8, p < 0.005; NK: 11.6 +/- 2.3 vs. 7.0 +/- 1.9, p < 0.005) was improved.
In both group dynamic lower extremity training caused improvement in exercise capacity. The favorable metabolic effect of training was shown by the change of anaerobic threshold resulting in less carbon dioxide production during analogous exercise. This reduction led to less ventilation reducing the work of breathing in supervised group. The more favorable adaptation taking place in the group supervised by physiotherapists might have resulted from the controlled higher intensity of the training.
肺康复已成为慢性阻塞性肺疾病(COPD)患者综合管理的一部分。下肢动态训练已被证明是该项目中最有效的要素。
在类似项目中,有监督的训练是否有更有利的效果?
随机选取两组共54例患者进行研究,其中一组由物理治疗师监督(K组,n = 22),另一组无监督(NK组,n = 32)。两组均为病情严重程度相同(一秒用力呼气量)[FEV1(平均值±标准差)]的住院患者:K组:51.0±16.1 vs. NK组:51.9±15.6%预计值)。K组每周在肺科门诊进行3 - 4次由物理治疗师监督的骑行训练,每次45分钟,为期8周;NK组在家中以骑行、爬楼梯或动态行走的形式进行相同时长、相同每周周期和时间间隔的训练。
康复后,监督组的肺活量(VC)(K组:3.0±0.8 vs. 3.3±0.7升,p < 0.05)、肺气肿比率(RV/TLC):K组:53.5±10.1 vs. 51.6±9.9,p < 0.05),以及非监督组的肺泡容积(VA)(NK组:4.3±0.9 vs. 4.7±0.9升,p < 0.05)均显著改善。K组的运动能力改善更有效(K组:92.7±33.9 vs. 106.4±34.5瓦,p < 0.001;NK组:95.8±36.7 vs. 99.9±35.1瓦,p < 0.05)。两组的有氧能力(VO2:K组:1.2±0.4 vs. 1.3±0.4升/分钟,p < 0.01,NK组:1.1±0.4 vs. 1.2±0.4升/分钟,p < 0.01;VO2/kg:K组:16.1±5.5 vs. 17.5±5.8毫升/千克/分钟,p < 0.01,NK组:16.2±5.3 vs. 16.7±4.8毫升/千克/分钟,p < 0.01)和无氧阈值水平[AT(预计VO2%)](K组:36.6±9.8 vs. 42.8±10.2%,p < 0.001;NK组:40.8±12.0 vs. 44.6±11.6%,p < 0.001)均显著改善。在相同运动水平下,心率储备:(K组:17.7±22.7 vs. 28.8±31.5升/分钟,p < 0.01;NK组:20.4±21.2 vs. 25.0±21.6升/分钟,p < 0.01)也有所改善。呼吸困难的Borg量表评分(0 - 10):(K组:6.4±2.5 vs. 5.7±2.7,p < 0.05;NK组:7.5±1.8 vs. 6.9±2.2,p < 0.05)降低,生活质量评分(0 - 24):K组:11.5±0.7 vs. 9.0±2.8,p < 0.005;NK组:11.6±2.3 vs. 7.0±1.9,p < 0.005)提高。
两组的下肢动态训练均使运动能力得到改善。训练的有利代谢效应通过无氧阈值的变化得以体现,即在类似运动中二氧化碳产生减少。这种减少导致通气减少,从而降低了监督组的呼吸功。在物理治疗师监督组中出现的更有利的适应性变化可能是由于训练强度得到控制且更高。