Suppr超能文献

中期纺锤体的长度控制

Length control of the metaphase spindle.

作者信息

Goshima Gohta, Wollman Roy, Stuurman Nico, Scholey Jonathan M, Vale Ronald D

机构信息

Physiology Course 2004, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.

出版信息

Curr Biol. 2005 Nov 22;15(22):1979-88. doi: 10.1016/j.cub.2005.09.054.

Abstract

BACKGROUND

The pole-to-pole distance of the metaphase spindle is reasonably constant in a given cell type; in the case of vertebrate female oocytes, this steady-state length can be maintained for substantial lengths of time, during which time microtubules remain highly dynamic. Although a number of molecular perturbations have been shown to influence spindle length, a global understanding of the factors that determine metaphase spindle length has not been achieved.

RESULTS

Using the Drosophila S2 cell line, we depleted or overexpressed proteins that either generate sliding forces between spindle microtubules (Kinesin-5, Kinesin-14, dynein), promote microtubule polymerization (EB1, Mast/Orbit [CLASP], Minispindles [Dis1/XMAP215/TOG]) or depolymerization (Kinesin-8, Kinesin-13), or mediate sister-chromatid cohesion (Rad21) in order to explore how these forces influence spindle length. Using high-throughput automated microscopy and semiautomated image analyses of >4000 spindles, we found a reduction in spindle size after RNAi of microtubule-polymerizing factors or overexpression of Kinesin-8, whereas longer spindles resulted from the knockdown of Rad21, Kinesin-8, or Kinesin-13. In contrast, and differing from previous reports, bipolar spindle length is relatively insensitive to increases in motor-generated sliding forces. However, an ultrasensitive monopolar-to-bipolar transition in spindle architecture was observed at a critical concentration of the Kinesin-5 sliding motor. These observations could be explained by a quantitative model that proposes a coupling between microtubule depolymerization rates and microtubule sliding forces.

CONCLUSIONS

By integrating extensive RNAi with high-throughput image-processing methodology and mathematical modeling, we reach to a conclusion that metaphase spindle length is sensitive to alterations in microtubule dynamics and sister-chromatid cohesion, but robust against alterations of microtubule sliding force.

摘要

背景

在特定细胞类型中,中期纺锤体的两极间距离相当恒定;对于脊椎动物的雌性卵母细胞而言,这种稳态长度能够在相当长的时间内得以维持,在此期间微管保持高度动态。尽管已表明多种分子扰动会影响纺锤体长度,但尚未全面了解决定中期纺锤体长度的因素。

结果

利用果蝇S2细胞系,我们对在纺锤体微管之间产生滑动力的蛋白(驱动蛋白-5、驱动蛋白-14、动力蛋白)、促进微管聚合的蛋白(EB1、Mast/Orbit [CLASP]、微纺锤体 [Dis1/XMAP215/TOG])或解聚的蛋白(驱动蛋白-8、驱动蛋白-13),以及介导姐妹染色单体黏连的蛋白(Rad21)进行了敲低或过表达,以探究这些力如何影响纺锤体长度。通过对4000多个纺锤体进行高通量自动显微镜检查和半自动图像分析,我们发现微管聚合因子RNA干扰后或驱动蛋白-8过表达时纺锤体尺寸减小,而敲低Rad21、驱动蛋白-8或驱动蛋白-13则导致纺锤体更长。相比之下,与先前报道不同,双极纺锤体长度对马达产生的滑动力增加相对不敏感。然而,在驱动蛋白-5滑动马达的临界浓度下,观察到纺锤体结构中存在超敏感的单极到双极转变。这些观察结果可以通过一个定量模型来解释,该模型提出微管解聚速率与微管滑动力之间存在耦合关系。

结论

通过将广泛的RNA干扰与高通量图像处理方法和数学建模相结合,我们得出结论,中期纺锤体长度对微管动力学和姐妹染色单体黏连的改变敏感,但对微管滑动力的改变具有抗性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验