Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Cytoskeleton (Hoboken). 2024 Aug;81(8):356-368. doi: 10.1002/cm.21849. Epub 2024 Mar 7.
The accurate segregation of chromosomes during female meiosis relies on the precise assembly and function of the meiotic spindle, a dynamic structure primarily composed of microtubules. Despite the crucial role of microtubule dynamics in this process, the relationship between microtubule length and spindle size remains elusive. Leveraging Caenorhabditis elegans as a model system, we combined electron tomography and live imaging to investigate this correlation. Our analysis revealed significant changes in spindle length throughout meiosis, coupled with alterations in microtubule length. Surprisingly, while spindle size decreases during the initial stages of anaphase, the size of antiparallel microtubule overlap decreased as well. Detailed electron tomography shows a positive correlation between microtubule length and spindle size, indicating a role of microtubule length in determining spindle dimensions. Notably, microtubule numbers displayed no significant association with spindle length, highlighting the dominance of microtubule length regulation in spindle size determination. Depletion of the microtubule depolymerase KLP-7 led to elongated metaphase spindles with increased microtubule length, supporting the link between microtubule length and spindle size. These findings underscore the pivotal role of regulating microtubule dynamics, and thus microtubule length, in governing spindle rearrangements during meiotic division, shedding light on fundamental mechanisms dictating spindle architecture.
在雌性减数分裂过程中,染色体的准确分离依赖于减数分裂纺锤体的精确组装和功能,这是一个主要由微管组成的动态结构。尽管微管动力学在这个过程中起着至关重要的作用,但微管长度和纺锤体大小之间的关系仍然难以捉摸。利用秀丽隐杆线虫作为模型系统,我们结合电子断层扫描和实时成像来研究这种相关性。我们的分析揭示了减数分裂过程中纺锤体长度的显著变化,同时伴随着微管长度的变化。令人惊讶的是,虽然纺锤体大小在后期的早期阶段减小,但平行微管重叠的大小也减小了。详细的电子断层扫描显示微管长度与纺锤体大小之间存在正相关,表明微管长度在决定纺锤体尺寸方面起着作用。值得注意的是,微管数量与纺锤体长度没有显著的相关性,这突出了微管长度调节在纺锤体大小决定中的主导地位。微管解聚酶 KLP-7 的耗竭导致中期纺锤体拉长,微管长度增加,支持微管长度与纺锤体大小之间的联系。这些发现强调了调节微管动力学的关键作用,从而调节微管长度,在控制减数分裂过程中的纺锤体重排方面起着重要作用,为决定纺锤体结构的基本机制提供了线索。