Suppr超能文献

HTself:用于低重复微阵列研究的基于自身的统计检验。

HTself: self-self based statistical test for low replication microarray studies.

作者信息

Vêncio Ricardo Z N, Koide Tie

机构信息

BIOINFO-USP-Núcleo de Pesquisas em Bioinformática, Universidade de São Paulo, São Paulo, Brazil.

出版信息

DNA Res. 2005;12(3):211-4. doi: 10.1093/dnares/dsi007.

Abstract

Different statistical methods have been used to classify a gene as differentially expressed in microarray experiments. They usually require a number of experimental observations to be adequately applied. However, many microarray experiments are constrained to low replication designs for different reasons, from financial restrictions to scarcely available RNA samples. Although performed in a high-throughput framework, there are few experimental replicas for each gene to allow the use of traditional or state-of-art statistical methods. In this work, we present a web-based bioinformatics tool that deals with real-life problems concerning low replication experiments. It uses an empirically derived criterion to classify a gene as differentially expressed by combining two widely accepted ideas in microarray analysis: self-self experiments to derive intensity-dependent cutoffs and non-parametric estimation techniques. To help laboratories without a bioinformatics infrastructure, we implemented the tool in a user-friendly website (http://blasto.iq.usp.br/~rvencio/HTself).

摘要

在微阵列实验中,人们使用了不同的统计方法来将基因分类为差异表达基因。这些方法通常需要大量实验观测数据才能充分应用。然而,由于各种原因,从资金限制到RNA样本稀缺,许多微阵列实验都局限于低重复设计。尽管是在高通量框架下进行,但每个基因的实验复制品很少,无法使用传统或最新的统计方法。在这项工作中,我们展示了一个基于网络的生物信息学工具,该工具可处理与低重复实验相关的实际问题。它通过结合微阵列分析中两个广泛接受的理念,即通过自身实验得出强度依赖性截止值和非参数估计技术,使用一种根据经验得出的标准将基因分类为差异表达基因。为了帮助没有生物信息学基础设施的实验室,我们在一个用户友好的网站(http://blasto.iq.usp.br/~rvencio/HTself)上实现了该工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验