Suppr超能文献

通过方差分析-稀疏成分分析在时间进程微阵列实验中发现基因表达模式。

Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA.

作者信息

Nueda María José, Conesa Ana, Westerhuis Johan A, Hoefsloot Huub C J, Smilde Age K, Talón Manuel, Ferrer Alberto

机构信息

Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Apartado 03080, Alicante, Spain.

出版信息

Bioinformatics. 2007 Jul 15;23(14):1792-800. doi: 10.1093/bioinformatics/btm251. Epub 2007 May 22.

Abstract

MOTIVATION

Designed microarray experiments are used to investigate the effects that controlled experimental factors have on gene expression and learn about the transcriptional responses associated with external variables. In these datasets, signals of interest coexist with varying sources of unwanted noise in a framework of (co)relation among the measured variables and with the different levels of the studied factors. Discovering experimentally relevant transcriptional changes require methodologies that take all these elements into account.

RESULTS

In this work, we develop the application of the Analysis of variance-simultaneous component analysis (ANOVA-SCA) Smilde et al. Bioinformatics, (2005) to the analysis of multiple series time course microarray data as an example of multifactorial gene expression profiling experiments. We denoted this implementation as ASCA-genes. We show how the combination of ANOVA-modeling and a dimension reduction technique is effective in extracting targeted signals from data by-passing structural noise. The methodology is valuable for identifying main and secondary responses associated with the experimental factors and spotting relevant experimental conditions. We additionally propose a novel approach for gene selection in the context of the relation of individual transcriptional patterns to global gene expression signals. We demonstrate the methodology on both real and synthetic datasets.

AVAILABILITY

ASCA-genes has been implemented in the statistical language R and is available at http://www.ivia.es/centrodegenomica/bioinformatics.htm.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

设计微阵列实验用于研究可控实验因素对基因表达的影响,并了解与外部变量相关的转录反应。在这些数据集中,感兴趣的信号与测量变量之间(共)相关框架内不同来源的不必要噪声以及所研究因素的不同水平共存。发现与实验相关的转录变化需要考虑所有这些因素的方法。

结果

在这项工作中,我们将方差分析 - 同时成分分析(ANOVA - SCA)(Smilde等人,《生物信息学》,2005年)应用于多系列时间进程微阵列数据的分析,作为多因素基因表达谱实验的一个例子。我们将此实现表示为ASCA - genes。我们展示了方差分析建模和降维技术的结合如何有效地从数据中提取目标信号,绕过结构噪声。该方法对于识别与实验因素相关的主要和次要反应以及发现相关实验条件很有价值。我们还提出了一种在个体转录模式与全局基因表达信号关系背景下进行基因选择的新方法。我们在真实和合成数据集上展示了该方法。

可用性

ASCA - genes已用统计语言R实现,可在http://www.ivia.es/centrodegenomica/bioinformatics.htm获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验