Suppr超能文献

Down-regulation of endogenous amyloid precursor protein processing due to cellular aging.

作者信息

Kern Andreas, Roempp Birgit, Prager Kai, Walter Jochen, Behl Christian

机构信息

Institute for Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.

出版信息

J Biol Chem. 2006 Feb 3;281(5):2405-13. doi: 10.1074/jbc.M505625200. Epub 2005 Nov 22.

Abstract

Processing of amyloid precursor protein (APP) is a well acknowledged central pathogenic mechanism in Alzheimer disease. However, influences of age-associated cellular alterations on the biochemistry of APP processing have not been studied in molecular detail so far. Here, we report that processing of endogenous APP is down-regulated during the aging of normal human fibroblasts (IMR-90). The generation of intracellular APP cleavage products C99, C83, and AICD gradually declines with increasing life span and is accompanied by a reduced secretion of soluble APP (sAPP) and sAPPalpha. Further, the maturation of APP was reduced in senescent cells, which has been shown to be directly mediated by age-associated increased cellular cholesterol levels. Of the APP processing secretases, protein levels of constituents of the gamma-secretase complex, presenilin-1 (PS1) and nicastrin, were progressively reduced during aging, resulting in a progressive decrease in gamma-secretase enzymatic activity. ADAM10 (a disintegrin and metalloprotease 10) and BACE (beta-site APP-cleaving enzyme) protein levels exhibited no age-associated regulation, but interestingly, BACE enzymatic activity was increased in aged cells. PS1 and BACE are located in detergent-resistant membranes (DRMs), well structured membrane microdomains exhibiting high levels of cholesterol, and caveolin-1. Although total levels of both structural components of DRMs were up-regulated in aged cells, their particular DRM association was decreased. This age-dependent membrane modification was associated with an altered distribution of PS1 and BACE between DRM and non-DRM fractions, very likely affecting their APP processing potential. In conclusion, we have found a significant modulation of endogenous APP processing and maturation in human fibroblasts caused by age-associated alterations in cellular biochemistry.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验