Manabe Shin-Ichi, Gu Zezong, Lipton Stuart A
Center for Neuroscience and Aging, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4747-53. doi: 10.1167/iovs.05-0128.
Understanding the mechanism of neuronal cell death in retinal diseases like glaucoma is important for devising new treatments. One factor involves excitatory amino acid stimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, excessive Ca2+ influx, and formation of nitric oxide (NO) via neuronal NO synthase (nNOS). Another factor is the abnormal activation of matrix metalloproteinases (MMPs), in particular MMP-9, which triggers an extracellular signaling cascade leading to apoptosis. This study was designed to investigate the mechanism of excitotoxic retinal ganglion cell (RGC) death in vivo and its relationship to MMP activation.
NMDA and glycine were injected into the vitreous of the eye in rats and in nNOS-deficient mice (nNOS-/-) versus control. Gelatinolytic activity of MMP-9 and MMP-2 by zymography and cellular localization by immunohistochemistry were examined, and the effect of MMP inhibition on NMDA-induced RGC death was tested.
NMDA was found to upregulate the proform of MMP-9 in the retina and to increase MMP-9 gelatinolytic activity. Retrograde labeling with aminostilbamidine to identify RGCs confirmed that MMP activity occurred only in these retinal neurons and not in glial or other retinal cell types after excitotoxic insult. Deconvolution fluorescence microscopy revealed that MMP activity colocalized with immunoreactive S-nitrosylated protein. NMDA-induced MMP activation was diminished in the retina of nNOS-/- mice, implying that S-nitrosylation of MMP had indeed occurred. In addition, the broad-spectrum MMP inhibitor GM6001 protected RGCs after intravitreal NMDA injection.
These findings suggest that an extracellular proteolytic pathway in the retina contributes to RGC death via NO-activated MMP-9.
了解青光眼等视网膜疾病中神经元细胞死亡的机制对于设计新的治疗方法至关重要。一个因素涉及兴奋性氨基酸对N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体的刺激、过量的Ca2+内流以及通过神经元型一氧化氮合酶(nNOS)形成一氧化氮(NO)。另一个因素是基质金属蛋白酶(MMPs)的异常激活,尤其是MMP-9,它触发细胞外信号级联反应导致细胞凋亡。本研究旨在探讨体内兴奋性毒性视网膜神经节细胞(RGC)死亡的机制及其与MMP激活的关系。
将NMDA和甘氨酸注入大鼠和nNOS基因敲除小鼠(nNOS-/-)的玻璃体中,并与对照组进行比较。通过酶谱法检测MMP-9和MMP-2的明胶酶活性,通过免疫组织化学检测细胞定位,并测试MMP抑制对NMDA诱导的RGC死亡的影响。
发现NMDA可上调视网膜中MMP-9的前体形式并增加MMP-9的明胶酶活性。用氨基二苯乙烯逆行标记以识别RGCs证实,在兴奋性毒性损伤后,MMP活性仅发生在这些视网膜神经元中,而不在神经胶质细胞或其他视网膜细胞类型中。去卷积荧光显微镜显示,MMP活性与免疫反应性S-亚硝基化蛋白共定位。在nNOS-/-小鼠的视网膜中,NMDA诱导的MMP激活减弱,这意味着MMP的S-亚硝基化确实发生了。此外,广谱MMP抑制剂GM6001在玻璃体内注射NMDA后可保护RGCs。
这些发现表明,视网膜中的细胞外蛋白水解途径通过NO激活的MMP-9导致RGC死亡。