Charron Jean-Benoit Frenette, Ouellet François, Pelletier Mélanie, Danyluk Jean, Chauve Cédric, Sarhan Fathey
Département des Sciences Biologiques , Université du Québec à Montréal, Montreal, Quebec, Canada H3C 3P8.
Plant Physiol. 2005 Dec;139(4):2017-28. doi: 10.1104/pp.105.070466. Epub 2005 Nov 23.
Lipocalins are a group of proteins that have been characterized in bacteria, invertebrate, and vertebrate animals. However, very little is known about plant lipocalins. We have previously reported the cloning of the first true plant lipocalins. Here we report the identification and characterization of plant lipocalins and lipocalin-like proteins using an integrated approach of data mining, expression studies, cellular localization, and phylogenetic analyses. Plant lipocalins can be classified into two groups, temperature-induced lipocalins (TILs) and chloroplastic lipocalins (CHLs). In addition, violaxanthin de-epoxidases (VDEs) and zeaxanthin epoxidases (ZEPs) can be classified as lipocalin-like proteins. CHLs, VDEs, and ZEPs possess transit peptides that target them to the chloroplast. On the other hand, TILs do not show any targeting peptide, but localization studies revealed that the proteins are found at the plasma membrane. Expression analyses by quantitative real-time PCR showed that expression of the wheat (Triticum aestivum) lipocalins and lipocalin-like proteins is associated with abiotic stress response and is correlated with the plant's capacity to develop freezing tolerance. In support of this correlation, data mining revealed that lipocalins are present in the desiccation-tolerant red algae Porphyra yezoensis and the cryotolerant marine yeast Debaryomyces hansenii, suggesting a possible association with stress-tolerant organisms. Considering the plant lipocalin properties, tissue specificity, response to temperature stress, and their association with chloroplasts and plasma membranes of green leaves, we hypothesize a protective function of the photosynthetic system against temperature stress. Phylogenetic analyses suggest that TIL lipocalin members in higher plants were probably inherited from a bacterial gene present in a primitive unicellular eukaryote. On the other hand, CHLs, VDEs, and ZEPs may have evolved from a cyanobacterial ancestral gene after the formation of the cyanobacterial endosymbiont from which the chloroplast originated.
脂质运载蛋白是一类在细菌、无脊椎动物和脊椎动物中已得到表征的蛋白质。然而,对于植物脂质运载蛋白却知之甚少。我们之前报道了首个真正的植物脂质运载蛋白的克隆。在此,我们报告利用数据挖掘、表达研究、细胞定位和系统发育分析的综合方法对植物脂质运载蛋白和类脂质运载蛋白进行的鉴定与表征。植物脂质运载蛋白可分为两组,即温度诱导型脂质运载蛋白(TILs)和叶绿体脂质运载蛋白(CHLs)。此外,紫黄质脱环氧化酶(VDEs)和玉米黄质环氧化酶(ZEPs)可归类为类脂质运载蛋白。CHLs、VDEs和ZEPs拥有将它们靶向至叶绿体的转运肽。另一方面,TILs未显示任何靶向肽,但定位研究表明这些蛋白质存在于质膜上。通过定量实时PCR进行的表达分析表明,小麦(普通小麦)脂质运载蛋白和类脂质运载蛋白的表达与非生物胁迫反应相关,并且与植物形成抗冻性的能力相关。为支持这种相关性,数据挖掘显示脂质运载蛋白存在于耐干燥的红藻条斑紫菜和耐低温的海洋酵母汉逊德巴利酵母中,这表明可能与耐胁迫生物有关。考虑到植物脂质运载蛋白的特性、组织特异性、对温度胁迫的反应以及它们与绿叶叶绿体和质膜的关联,我们推测光合系统对温度胁迫具有保护功能。系统发育分析表明,高等植物中的TIL脂质运载蛋白成员可能继承自原始单细胞真核生物中存在的一个细菌基因。另一方面,CHLs、VDEs和ZEPs可能在叶绿体起源的蓝藻内共生体形成后从蓝藻祖先基因进化而来。