Bem Tiaza, Le Feuvre Yves, Rinzel John, Meyrand Pierre
Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Science, Warsaw, Poland.
Eur J Neurosci. 2005 Nov;22(10):2661-8. doi: 10.1111/j.1460-9568.2005.04405.x.
Information processing in higher brain structures is thought to rely on the synchronization of spiking neurons. Increasing evidence indicates that, within these structures, inhibitory neurons are linked by both chemical and electrical synapses. However, how synchronized states may emerge from such circuits is not fully understood. Using snail neurons interconnected through a dynamic-clamp system, we show that networks of spiking neurons linked by both reciprocal inhibition and electrical coupling can express two coexisting coordination patterns of different rhythms. One of these patterns consists of antiphase firing of the network partners whereas, in the other, neurons fire synchronously. Switching between patterns may be evoked immediately by transient stimuli, demonstrating bistability of the network. Thus electrical coupling can provide a potent way for instantaneous reconfiguration of activity patterns in inhibitory spiking networks without alteration of intrinsic network properties by modulatory processes.
高等脑结构中的信息处理被认为依赖于发放脉冲的神经元的同步。越来越多的证据表明,在这些结构中,抑制性神经元通过化学突触和电突触相连。然而,这种回路如何产生同步状态尚未完全了解。利用通过动态钳制系统相互连接的蜗牛神经元,我们表明,通过相互抑制和电耦合相连的发放脉冲的神经元网络可以表达两种不同节律共存的协调模式。其中一种模式由网络伙伴的反相发放组成,而在另一种模式中,神经元同步发放。模式之间的切换可由瞬态刺激立即诱发,表明网络具有双稳性。因此,电耦合可以提供一种有效的方式,在不通过调节过程改变内在网络特性的情况下,瞬时重新配置抑制性发放脉冲网络中的活动模式。