Suppr超能文献

N-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms.

作者信息

Barreiro E, Sánchez D, Gáldiz J B, Hussain S N A, Gea J

机构信息

Muscle and Respiratory System Research Unit, IMIM, Co/Dr. Aiguader, 80, Barcelona, E-08003 Spain.

出版信息

Eur Respir J. 2005 Dec;26(6):1032-9. doi: 10.1183/09031936.05.00003705.

Abstract

The antioxidant N-acetylcysteine (NAC) prevented sepsis-induced diaphragmatic dysfunction. As an indirect antioxidant NAC was shown to induce superoxide dismutase (SOD) activity in immune cells from endotoxaemic mice. The aim of this study was to assess whether NAC acts as an indirect antioxidant by inducing manganese (Mn)-SOD activity in the diaphragms of endotoxaemic rats, while preventing muscle dysfunction. A controlled study was conducted, in which protein carbonylation, Mn-SOD, catalase, and 3-nitrotyrosine immunoreactivity were detected using immunoblotting and immunohistochemistry in rat diaphragms. Six groups were studied for 24 h after a saline (control) or lipopolysaccharide (LPS; 20 mg.kg-1) i.p. injection in the absence and presence of NAC pre-treatment (either 1.5 or 3 mmol.kg(-1).24 h-1 for 7 days, oral administration). Diaphragm mitochondrial Mn-SOD activity and respiratory muscle function were also determined. Within 24 h, LPS induced maximal inspiratory pressure reduction, increasing diaphragmatic protein carbonylation and nitration. Pre-treatment with 3 mmol.kg-1 NAC clearly increased muscle Mn-SOD protein content and activity in both LPS- and saline-injected animals, while reducing protein carbonylation and nitration, and partially preventing the LPS-induced respiratory muscle dysfunction. Data produced from this study indicate that high doses of N-acetylcysteine induces manganese superoxide dismutase, as well as preserves its activity, possibly by preventing nitration of critical tyrosine residues of the enzyme.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验