Suppr超能文献

通过输出编码和支持向量机将多类癌症分类简化为二元分类。

Reducing multiclass cancer classification to binary by output coding and SVM.

作者信息

Shen Li, Tan Eng Chong

机构信息

School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.

出版信息

Comput Biol Chem. 2006 Feb;30(1):63-71. doi: 10.1016/j.compbiolchem.2005.10.008.

Abstract

Multiclass cancer classification based on microarray data is presented. The binary classifiers used combine support vector machines with a generalized output-coding scheme. Different coding strategies, decoding functions and feature selection methods are incorporated and validated on two cancer datasets: GCM and ALL. Using random coding strategy and recursive feature elimination, the testing accuracy achieved is as high as 83% on GCM data with 14 classes. Comparing with other classification methods, our method is superior in classificatory performance.

摘要

提出了基于微阵列数据的多类癌症分类方法。所使用的二分类器将支持向量机与广义输出编码方案相结合。在两个癌症数据集(GCM和ALL)上纳入并验证了不同的编码策略、解码函数和特征选择方法。使用随机编码策略和递归特征消除,在具有14个类别的GCM数据上实现的测试准确率高达83%。与其他分类方法相比,我们的方法在分类性能上更具优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验