Shen Li, Tan Eng Chong
School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
Comput Biol Chem. 2006 Feb;30(1):63-71. doi: 10.1016/j.compbiolchem.2005.10.008.
Multiclass cancer classification based on microarray data is presented. The binary classifiers used combine support vector machines with a generalized output-coding scheme. Different coding strategies, decoding functions and feature selection methods are incorporated and validated on two cancer datasets: GCM and ALL. Using random coding strategy and recursive feature elimination, the testing accuracy achieved is as high as 83% on GCM data with 14 classes. Comparing with other classification methods, our method is superior in classificatory performance.
提出了基于微阵列数据的多类癌症分类方法。所使用的二分类器将支持向量机与广义输出编码方案相结合。在两个癌症数据集(GCM和ALL)上纳入并验证了不同的编码策略、解码函数和特征选择方法。使用随机编码策略和递归特征消除,在具有14个类别的GCM数据上实现的测试准确率高达83%。与其他分类方法相比,我们的方法在分类性能上更具优势。