Suppr超能文献

Mechanisms underlying the nitric oxide inhibitory effects in mouse ileal longitudinal muscle.

作者信息

Zizzo Maria Grazia, Mulè Flavia, Serio Rosa

机构信息

Diparttimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italia.

出版信息

Can J Physiol Pharmacol. 2005 Aug-Sep;83(8-9):805-10. doi: 10.1139/y05-073.

Abstract

We investigated the mechanisms involved in the nitric oxide (NO)-induced inhibitory effects on longitudinal smooth muscle of mouse ileum, using organ bath technique. Exogenously applied NO, delivered as sodium nitroprusside (SNP; 0.1-100 micromol/L) induced a concentration-dependent reduction of the ileal spontaneous contractions. 1H-[1,2,4]oxadiazolol[4,3,a]quinoxalin-1-one (ODQ; 1 micromol/L), a guanilyl cyclase inhibitor, reduced the SNP-induced effects. Tetraethylammonium chloride (20 mmol/L), a non-selective K+ channel blocker, and charybdotoxin (0.1 micromol/L), blocker of large conductance Ca2+-dependent K+ channels, significantly reduced SNP-induced inhibitory effects. In contrast, apamin (0.1 micromol/L), blocker of small conductance Ca2+-dependent K+ channels, was not able to affect the response to SNP. Ciclopiazonic acid (10 micromol/L) or thapsigargin (0.1 micromol/L), sarcoplasmatic reticulum Ca2+-ATPase inhibitors, decreased the SNP-inhibitory effects. Ryanodine (10 micromol/L), inhibitor of Ca2+ release from ryanodine-sensitive intracellular stores, significantly reduced the SNP inhibitory effects. The membrane permeable analogue of cGMP, 8-bromoguanosine 3',5'-cyclic monophosphate (100 micromol/L), also reduced spontaneous mechanical activity, and its effect was antagonized by ryanodine. The present study suggests that NO causes inhibitory effects on longitudinal smooth muscle of mouse ileum through cGMP which in turn would activate the large conductance Ca2+-dependent K+ channels, via localized ryanodine-sensitive Ca2+ release.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验