Tombola Francesco, Pathak Medha M, Isacoff Ehud Y
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
Neuron. 2005 Dec 8;48(5):719-25. doi: 10.1016/j.neuron.2005.11.024.
Despite tremendous progress in the study of voltage-gated channels, the molecular mechanism underlying voltage sensing has remained a matter of debate. We review five new studies that make major progress in the field. The studies employ a battery of distinct approaches that have the common aim of measuring the motion of the voltage sensor. We interpret the results in light of the recent crystal structure of the mammalian potassium channel Kv1.2. We focus on the transmembrane movement of the voltage sensor as a key element to the detection of membrane potential and to the control of channel gating.
尽管在电压门控通道的研究方面取得了巨大进展,但电压传感背后的分子机制仍存在争议。我们综述了五项在该领域取得重大进展的新研究。这些研究采用了一系列不同的方法,其共同目标是测量电压传感器的运动。我们根据哺乳动物钾通道Kv1.2的最新晶体结构来解释这些结果。我们将重点关注电压传感器的跨膜运动,它是检测膜电位和控制通道门控的关键因素。