Grimm Sasha S, Isacoff Ehud Y
Biophysics Graduate Group, University of California, Berkeley, California, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
Nat Chem Biol. 2016 Apr;12(4):261-7. doi: 10.1038/nchembio.2022. Epub 2016 Feb 15.
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.
别构作用对酶活性起着关键的调控作用,使催化位点在无活性状态和活性状态之间发生偏向。我们发现,海鞘电压感应磷酸酶(Ci-VSP)可修饰磷酸肌醇信号脂质(PIP),它并非只有一种,而是具有两种连续的活性状态,且底物特异性不同,其占据情况受电压感应结构域(VSD)的连续构象别构调控。利用PIP的快速荧光共振能量转移(FRET)报告分子来监测酶活性,并通过电压钳荧光测定法来监测VSD中的构象变化,我们发现,当VSD经历初始电压感应运动时,Ci-VSP从无活性状态转变为偏好PIP3的活性状态,而当VSD完全激活时,它又转变为偏好PIP2的第二种活性状态。这种对双特异性酶的两步别构调控使得电压能够及时塑造PIP浓度,并为PIP调节的离子通道、转运体、细胞运动、内吞作用和外排作用的复杂调节提供了一种机制。