Taylor Rachel, Kebaara Bessie Wanja, Nazarenus Tara, Jones Ashley, Yamanaka Rena, Uhrenholdt Rachel, Wendler Jason P, Atkin Audrey L
School of Biological Sciences, University of Nebraska-Lincoln, NE 68588-0666, USA.
Eukaryot Cell. 2005 Dec;4(12):2066-77. doi: 10.1128/EC.4.12.2066-2077.2005.
The nonsense-mediated mRNA decay (NMD) pathway has historically been thought of as an RNA surveillance system that degrades mRNAs with premature translation termination codons, but the NMD pathway of Saccharomyces cerevisiae has a second role regulating the decay of some wild-type mRNAs. In S. cerevisiae, a significant number of wild-type mRNAs are affected when NMD is inactivated. These mRNAs are either wild-type NMD substrates or mRNAs whose abundance increases as an indirect consequence of NMD. A current challenge is to sort the mRNAs that accumulate when NMD is inactivated into direct and indirect targets. We have developed a bioinformatics-based approach to address this challenge. Our approach involves using existing genomic and function databases to identify transcription factors whose mRNAs are elevated in NMD-deficient cells and the genes that they regulate. Using this strategy, we have investigated a coregulated set of genes. We have shown that NMD regulates accumulation of ADR1 and GAL4 mRNAs, which encode transcription activators, and that Adr1 is probably a transcription activator of ATS1. This regulation is physiologically significant because overexpression of ADR1 causes a respiratory defect that mimics the defect seen in strains with an inactive NMD pathway. This strategy is significant because it allows us to classify the genes regulated by NMD into functionally related sets, an important step toward understanding the role NMD plays in the normal functioning of yeast cells.
无义介导的mRNA降解(NMD)途径在历史上一直被认为是一种RNA监测系统,它会降解带有提前翻译终止密码子的mRNA,但酿酒酵母的NMD途径还有第二个作用,即调节一些野生型mRNA的降解。在酿酒酵母中,当NMD失活时,大量野生型mRNA会受到影响。这些mRNA要么是野生型NMD底物,要么是其丰度因NMD的间接作用而增加的mRNA。当前的一个挑战是将NMD失活时积累的mRNA分类为直接和间接靶标。我们开发了一种基于生物信息学的方法来应对这一挑战。我们的方法包括使用现有的基因组和功能数据库来识别其mRNA在NMD缺陷细胞中水平升高的转录因子以及它们所调控的基因。使用这种策略,我们研究了一组共同调控的基因。我们已经表明,NMD调节编码转录激活因子的ADR1和GAL4 mRNA的积累,并且Adr1可能是ATS1的转录激活因子。这种调节在生理上具有重要意义,因为ADR1的过表达会导致呼吸缺陷,这与NMD途径失活的菌株中出现的缺陷相似。这种策略很重要,因为它使我们能够将受NMD调控的基因分类为功能相关的集合,这是朝着理解NMD在酵母细胞正常功能中所起作用迈出的重要一步。