Suppr超能文献

白色念珠菌Tup1参与法尼醇介导的丝状生长诱导抑制作用。

Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction.

作者信息

Kebaara Bessie W, Langford Melanie L, Navarathna Dhammika H M L P, Dumitru Raluca, Nickerson Kenneth W, Atkin Audrey L

机构信息

School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0666, USA.

出版信息

Eukaryot Cell. 2008 Jun;7(6):980-7. doi: 10.1128/EC.00357-07. Epub 2008 Apr 18.

Abstract

Candida albicans is a dimorphic fungus that can interconvert between yeast and filamentous forms. Its ability to regulate morphogenesis is strongly correlated with virulence. Tup1, a transcriptional repressor, and the signaling molecule farnesol are both capable of negatively regulating the yeast to filamentous conversion. Based on this overlap in function, we tested the hypothesis that the cellular response to farnesol involves, in part, the activation of Tup1. Tup1 functions with the DNA binding proteins Nrg1 and Rfg1 as a transcription regulator to repress the expression of hypha-specific genes. The tup1/tup1 and nrg1/nrg1 mutants, but not the rfg1/rfg1 mutant, failed to respond to farnesol. Treatment of C. albicans cells with farnesol caused a small but consistent increase in both TUP1 mRNA and protein levels. Importantly, this increase corresponds with the commitment point, beyond which added farnesol no longer blocks germ tube formation, and it correlates with a strong decrease in the expression of two Tup1-regulated hypha-specific genes, HWP1 and RBT1. Tup1 probably plays a direct role in the response to farnesol because farnesol suppresses the haploinsufficient phenotype of a TUP1/tup1 heterozygote. Farnesol did not affect EFG1 (a transcription regulator of filament development), NRG1, or RFG1 mRNA levels, demonstrating specific gene regulation in response to farnesol. Furthermore, the tup1/tup1 and nrg1/nrg1 mutants produced 17- and 19-fold more farnesol, respectively, than the parental strain. These levels of excess farnesol are sufficient to block filamentation in a wild-type strain. Our data are consistent with the role of Tup1 as a crucial component of the response to farnesol in C. albicans.

摘要

白色念珠菌是一种双态真菌,能够在酵母形态和丝状形态之间相互转换。其调节形态发生的能力与毒力密切相关。转录抑制因子Tup1和信号分子法尼醇都能够负向调节酵母向丝状的转变。基于功能上的这种重叠,我们测试了以下假设:细胞对法尼醇的反应部分涉及Tup1的激活。Tup1与DNA结合蛋白Nrg1和Rfg1一起作为转录调节因子,抑制菌丝特异性基因的表达。tup1/tup1和nrg1/nrg1突变体,但不是rfg1/rfg1突变体,对法尼醇没有反应。用 法尼醇处理白色念珠菌细胞会导致TUP1 mRNA和蛋白质水平出现小幅但持续的增加。重要的是,这种增加与转折点相对应,超过该点后添加的法尼醇不再阻止芽管形成,并且它与两个Tup1调节的菌丝特异性基因HWP1和RBT1的表达强烈降低相关。Tup1可能在对法尼醇的反应中起直接作用,因为法尼醇抑制了TUP1/tup1杂合子的单倍体不足表型。法尼醇不影响EFG1(丝状发育的转录调节因子)、NRG1或RFG1的mRNA水平,表明对法尼醇有特异性基因调节。此外,tup1/tup1和nrg1/nrg1突变体分别比亲本菌株产生多17倍和19倍的法尼醇。这些过量的法尼醇水平足以阻止野生型菌株中的丝状化。我们的数据与Tup1作为白色念珠菌对法尼醇反应的关键组成部分的作用一致。

相似文献

1
Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction.
Eukaryot Cell. 2008 Jun;7(6):980-7. doi: 10.1128/EC.00357-07. Epub 2008 Apr 18.
4
5
Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans.
Mol Biol Cell. 2005 Jun;16(6):2913-25. doi: 10.1091/mbc.e05-01-0071. Epub 2005 Apr 6.
6
Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans.
Eukaryot Cell. 2012 Oct;11(10):1219-25. doi: 10.1128/EC.00144-12. Epub 2012 Aug 10.
7
HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1.
J Bacteriol. 1999 Sep;181(17):5273-9. doi: 10.1128/JB.181.17.5273-5279.1999.
8
UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.
Mol Biol Cell. 2008 Apr;19(4):1354-65. doi: 10.1091/mbc.e07-11-1110. Epub 2008 Jan 23.
10
Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans.
Eukaryot Cell. 2002 Jun;1(3):353-65. doi: 10.1128/EC.1.3.353-365.2002.

引用本文的文献

1
Antioxidant and antimicrobial activities of methanolic extract and its phytochemical characterization.
Open Life Sci. 2024 Dec 16;19(1):20221011. doi: 10.1515/biol-2022-1011. eCollection 2024.
2
The role of serum albumin in filamentation, germ tube formation, and farnesol sequestration.
Appl Environ Microbiol. 2024 Dec 18;90(12):e0162624. doi: 10.1128/aem.01626-24. Epub 2024 Nov 11.
4
Adaptation to an amoeba host drives selection of virulence-associated traits and genetic variation in saprotrophic .
Front Cell Infect Microbiol. 2024 Mar 13;14:1367656. doi: 10.3389/fcimb.2024.1367656. eCollection 2024.
5
Physiological adventures in : farnesol and ubiquinones.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0008122. doi: 10.1128/mmbr.00081-22. Epub 2024 Mar 4.
6
Quorum sensing: cell-to-cell communication in .
Front Microbiol. 2023 Nov 23;14:1250151. doi: 10.3389/fmicb.2023.1250151. eCollection 2023.
7
Molecular association of and vulvovaginal candidiasis: focusing on a solution.
Front Cell Infect Microbiol. 2023 Oct 13;13:1245808. doi: 10.3389/fcimb.2023.1245808. eCollection 2023.
9
Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation.
Mol Biotechnol. 2024 Jul;66(7):1640-1659. doi: 10.1007/s12033-023-00796-x. Epub 2023 Jul 6.

本文引用的文献

6
Gene set coregulated by the Saccharomyces cerevisiae nonsense-mediated mRNA decay pathway.
Eukaryot Cell. 2005 Dec;4(12):2066-77. doi: 10.1128/EC.4.12.2066-2077.2005.
8
Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.
Cell Microbiol. 2005 Nov;7(11):1546-54. doi: 10.1111/j.1462-5822.2005.00616.x.
9
Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum.
Appl Environ Microbiol. 2005 Aug;71(8):4938-40. doi: 10.1128/AEM.71.8.4938-4940.2005.
10
Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth.
Eukaryot Cell. 2005 Jul;4(7):1203-10. doi: 10.1128/EC.4.7.1203-1210.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验