Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2005 Dec 8;438(7069):837-41. doi: 10.1038/nature04327.
Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses in applications such as efficient nonlinear optics. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a 'source' ensemble of 87Rb atoms at room temperature with another 'target' ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.
目前正在积极探索促进单光子与原子之间可控相互作用的技术。这些技术对于量子网络的实际实现至关重要,在量子网络中,利用原子进行量子态的产生、存储和处理的多个存储节点通过光纤中的单光子传输连接起来。实现量子网络的一条有前景的途径涉及利用电磁诱导透明(EIT,参考文献8、9)在光学致密原子系综中操纵光的量子脉冲。EIT是一种相干控制技术,在诸如高效非线性光学等应用中广泛用于控制经典多光子光脉冲的传播。在此,我们展示了利用EIT实现具有可调频率、定时和带宽的单光子的可控产生、传输和存储。我们研究了室温下87Rb原子的“源”系综中产生的单光子与另一个“目标”系综的相互作用。这使我们能够同时探测窄带宽单光子脉冲的光谱和量子统计特性,揭示其量子特性在EIT传播和存储过程中得以保留。我们测量了与单光子脉冲群速度降低相关的时间延迟,并报告了对其存储和检索的观测结果。