Suppr超能文献

具有射频相位循环的梯度回波序列的稳态:解析解,部分扰相的对比增强。

Steady state of gradient echo sequences with radiofrequency phase cycling: analytical solution, contrast enhancement with partial spoiling.

作者信息

Ganter Carl

机构信息

Department of Diagnostic Radiology, Klinikum rechts der Isar, Technical University Munich, Germany.

出版信息

Magn Reson Med. 2006 Jan;55(1):98-107. doi: 10.1002/mrm.20736.

Abstract

Spoiled gradient echo sequences can only reach a homogeneous steady state if sufficiently strong crusher gradients are used in combination with RF phase cycling (RF spoiling). However, the signal depends quite sensitively on the chosen phase increment phi and-lacking analytical solutions-numerical simulations must be used to study the transient and steady-state magnetization. For the steady state an exact analytical solution is derived, which holds for arbitrary sequence and tissue parameters. Besides a considerably improved computation performance, the analytical approach enables a better understanding of the complicated dependence on phi. For short repetition times (TR) the regime of small phi turns out to be particularly interesting: It is shown that the typical phi(c), where RF spoiling starts to become effective, is essentially inversely proportional to T(2). This tissue dependence implies that contrasts can be considerably larger with partial spoiling (phi approximately phi(c)) than with conventional RF spoiling (phi >> phi(c)). As an example, the uptake of contrast agents in tissues is investigated. For typical parameters a considerably improved contrast enhancement can be obtained, both theoretically and experimentally.

摘要

只有在使用足够强的扰相梯度并结合射频相位循环(射频扰相)时,扰相梯度回波序列才能达到均匀的稳态。然而,信号对所选的相位增量φ相当敏感,并且由于缺乏解析解,必须使用数值模拟来研究瞬态和稳态磁化。对于稳态,推导了一个精确的解析解,该解适用于任意序列和组织参数。除了显著提高计算性能外,解析方法还能更好地理解对φ的复杂依赖性。对于短重复时间(TR),小φ的情况特别有趣:结果表明,射频扰相开始变得有效的典型φ(c)基本上与T(2)成反比。这种组织依赖性意味着部分扰相(φ≈φ(c))时的对比度可能比传统射频扰相(φ>>φ(c))时大得多。作为一个例子,研究了组织中造影剂的摄取。对于典型参数,在理论和实验上都可以获得显著改善的对比度增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验