Suppr超能文献

振荡稳态成像(OSSI):一种用于功能磁共振成像的新方法。

Oscillating steady-state imaging (OSSI): A novel method for functional MRI.

作者信息

Guo Shouchang, Noll Douglas C

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Magn Reson Med. 2020 Aug;84(2):698-712. doi: 10.1002/mrm.28156. Epub 2020 Jan 8.

Abstract

PURPOSE

Signal-to-noise ratio (SNR) is crucial for high-resolution fMRI; however, current methods for SNR improvement are limited. A new approach, called oscillating steady-state imaging (OSSI), produces a signal that is large and -weighted, and is demonstrated to produce improved SNR compared to gradient echo (GRE) imaging with matched effective TE and spatial-temporal acquisition characteristics for high-resolution fMRI.

METHODS

Quadratic phase sequences were combined with balanced gradients to produce a large, oscillating steady-state signal. The quadratic phase progression was periodic over short intervals such as 10 TRs, inducing a frequency-dependent phase dispersal. Images over one period were combined to produce a single image with effectively -weighting. The OSSI parameters were explored through simulation and phantom data, and 2D and 3D human fMRI data were collected using OSSI and GRE imaging.

RESULTS

Phantom and human OSSI data showed highly reproducible signal oscillations with greater signal strength than GRE. Compared to single slice GRE with matched effective TE and spatial-temporal resolution, OSSI yielded more activation in the visual cortex by a factor of 1.84 and an improvement in temporal SNR by a factor of 1.83. Voxelwise percentage change comparisons between OSSI and GRE demonstrate a similar -weighted contrast mechanism with additional -weighting of about 15 ms immediately after the RF pulse.

CONCLUSIONS

OSSI is a new acquisition method that exploits a large, oscillating signal that is -weighted and suitable for fMRI. The steady-state signal from balanced gradients creates higher signal strength than single slice GRE at varying TEs, enabling greater volumes of functional activity and higher SNR for high-resolution fMRI.

摘要

目的

信噪比(SNR)对于高分辨率功能磁共振成像(fMRI)至关重要;然而,目前改善信噪比的方法有限。一种名为振荡稳态成像(OSSI)的新方法产生的信号大且具有特定加权,并且已证明与具有匹配有效回波时间(TE)和时空采集特性的梯度回波(GRE)成像相比,在高分辨率fMRI中能提高信噪比。

方法

二次相位序列与平衡梯度相结合以产生大的振荡稳态信号。二次相位进展在短间隔(如10个重复时间(TR))内是周期性的,从而引起频率依赖性相位分散。一个周期内的图像被组合以产生具有有效特定加权的单个图像。通过模拟和体模数据探索了OSSI参数,并使用OSSI和GRE成像收集了二维和三维人体fMRI数据。

结果

体模和人体OSSI数据显示出高度可重复的信号振荡,其信号强度比GRE更大。与具有匹配有效TE和时空分辨率的单层GRE相比,OSSI在视觉皮层中产生的激活增加了1.84倍,时间信噪比提高了1.83倍。OSSI和GRE之间的体素百分比变化比较表明,存在类似的特定加权对比机制,在射频脉冲后立即有额外约15毫秒的特定加权。

结论

OSSI是一种新的采集方法,它利用了大的、振荡的、具有特定加权且适用于fMRI的信号。平衡梯度产生的稳态信号在不同TE时比单层GRE具有更高的信号强度,从而能够实现更大体积的功能活动以及高分辨率fMRI的更高信噪比。

相似文献

1
Oscillating steady-state imaging (OSSI): A novel method for functional MRI.
Magn Reson Med. 2020 Aug;84(2):698-712. doi: 10.1002/mrm.28156. Epub 2020 Jan 8.
2
High-Resolution Oscillating Steady-State fMRI Using Patch-Tensor Low-Rank Reconstruction.
IEEE Trans Med Imaging. 2020 Dec;39(12):4357-4368. doi: 10.1109/TMI.2020.3017450. Epub 2020 Nov 30.
3
Manifold Regularizer for High-Resolution fMRI Joint Reconstruction and Dynamic Quantification.
IEEE Trans Med Imaging. 2024 Aug;43(8):2937-2948. doi: 10.1109/TMI.2024.3381197. Epub 2024 Aug 1.
4
A retrospective physiological noise correction method for oscillating steady-state imaging.
Magn Reson Med. 2021 Feb;85(2):936-944. doi: 10.1002/mrm.28414. Epub 2020 Aug 27.
7
Phase imaging with multiple phase-cycled balanced steady-state free precession at 9.4 T.
NMR Biomed. 2017 Jun;30(6). doi: 10.1002/nbm.3699. Epub 2017 Feb 10.
8
Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising.
Neuroimage. 2013 Apr 15;70:308-16. doi: 10.1016/j.neuroimage.2012.12.067. Epub 2013 Jan 5.
9
Rapid high-fidelity mapping using single-shot overlapping-echo acquisition and deep learning reconstruction.
Magn Reson Med. 2023 Jun;89(6):2157-2170. doi: 10.1002/mrm.29585. Epub 2023 Jan 19.
10
Fat-suppressed alternating-SSFP for whole-brain fMRI using breath-hold and visual stimulus paradigms.
Magn Reson Med. 2016 May;75(5):1978-88. doi: 10.1002/mrm.25797. Epub 2015 Jun 2.

引用本文的文献

1
Steady-state free precession for T* relaxometry: All echoes in every readout with k-space aliasing.
Magn Reson Med. 2025 Oct;94(4):1563-1576. doi: 10.1002/mrm.30590. Epub 2025 Jun 2.
2
Manifold Regularizer for High-Resolution fMRI Joint Reconstruction and Dynamic Quantification.
IEEE Trans Med Imaging. 2024 Aug;43(8):2937-2948. doi: 10.1109/TMI.2024.3381197. Epub 2024 Aug 1.
3
Stochastic optimization of three-dimensional non-Cartesian sampling trajectory.
Magn Reson Med. 2023 Aug;90(2):417-431. doi: 10.1002/mrm.29645. Epub 2023 Apr 17.
4
Off-resonance artifact correction for MRI: A review.
NMR Biomed. 2023 May;36(5):e4867. doi: 10.1002/nbm.4867. Epub 2022 Dec 14.
5
A retrospective physiological noise correction method for oscillating steady-state imaging.
Magn Reson Med. 2021 Feb;85(2):936-944. doi: 10.1002/mrm.28414. Epub 2020 Aug 27.
6
High-Resolution Oscillating Steady-State fMRI Using Patch-Tensor Low-Rank Reconstruction.
IEEE Trans Med Imaging. 2020 Dec;39(12):4357-4368. doi: 10.1109/TMI.2020.3017450. Epub 2020 Nov 30.

本文引用的文献

1
Magnetic resonance fingerprinting with quadratic RF phase for measurement of T simultaneously with δ , T , and T.
Magn Reson Med. 2019 Mar;81(3):1849-1862. doi: 10.1002/mrm.27543. Epub 2018 Oct 30.
2
A circular echo planar sequence for fast volumetric fMRI.
Magn Reson Med. 2019 Mar;81(3):1685-1698. doi: 10.1002/mrm.27522. Epub 2018 Oct 1.
3
High-resolution mapping of neuronal activation with balanced SSFP at 9.4 tesla.
Magn Reson Med. 2016 Jul;76(1):163-71. doi: 10.1002/mrm.25890. Epub 2015 Aug 24.
4
Steady-state functional MRI using spoiled small-tip fast recovery imaging.
Magn Reson Med. 2015 Feb;73(2):536-43. doi: 10.1002/mrm.25146. Epub 2014 Mar 11.
5
6
ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA.
Magn Reson Med. 2014 Mar;71(3):990-1001. doi: 10.1002/mrm.24751.
7
Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies.
J Magn Reson Imaging. 2012 Jul;36(1):39-54. doi: 10.1002/jmri.23572. Epub 2012 Feb 7.
10
Modeling SSFP functional MRI contrast in the brain.
Magn Reson Med. 2008 Sep;60(3):661-73. doi: 10.1002/mrm.21690.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验