Suppr超能文献

免疫荧光法鉴定和计数海洋聚球藻蓝细菌。

Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence.

机构信息

Marine Sciences Research Center and Department of Periodontics, State University of New York at Stony Brook, Stony Brook, New York 11794.

出版信息

Appl Environ Microbiol. 1983 Sep;46(3):553-9. doi: 10.1128/aem.46.3.553-559.1983.

Abstract

We used an indirect immunofluorescence technique to permit the identification and enumeration of individual or closely related strains of chroococcoid cyanobacteria of the general Synechococcus and Synechocystis in natural seawater samples. Antisera directed against each of five strains (two phycoerythrin-containing Synechococcus strains, two phycocyanin-containing Synechococcus strains, and one Synechocystis strain) were produced and tested for cross-reactions with cultures of a variety of cyanobacteria and representatives of other algae and bacteria. Each antiserum was relatively specific. The observed cross-reactions occurred between strains that were isolated from similar oceanic environments. We were able, therefore, to apply this technique to field samples. Preliminary results for April to December 1982 in Great South Bay, New York, show that Synechocystis populations are present only during spring and summer, phycocyanin-containing Synechococcus strains are only a minor component in the spring and summer, and phycoerythrin-containing Synechococcus populations become significant in summer and remain so until late fall or winter.

摘要

我们使用间接免疫荧光技术来鉴定和计数天然海水中单个或密切相关的聚球藻蓝细菌属(普通聚球藻和集胞藻)的菌株。针对五种菌株(两种含有藻红蛋白的聚球藻菌株、两种含有藻蓝蛋白的聚球藻菌株和一种集胞藻菌株)制备了抗血清,并测试了它们与各种蓝细菌以及其他藻类和细菌代表菌株的交叉反应。每种抗血清都具有相对的特异性。观察到的交叉反应发生在从相似海洋环境中分离的菌株之间。因此,我们能够将该技术应用于野外样本。1982 年 4 月至 12 月在纽约大南湾的初步结果表明,集胞藻种群仅存在于春季和夏季,含有藻蓝蛋白的聚球藻菌株在春季和夏季仅占很小一部分,而含有藻红蛋白的聚球藻种群在夏季变得重要,并一直持续到深秋或冬季。

相似文献

1
Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence.
Appl Environ Microbiol. 1983 Sep;46(3):553-9. doi: 10.1128/aem.46.3.553-559.1983.
2
Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong.
Environ Microbiol Rep. 2014 Feb;6(1):90-9. doi: 10.1111/1758-2229.12111. Epub 2013 Oct 22.
3
Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay.
Appl Environ Microbiol. 2010 May;76(9):2955-60. doi: 10.1128/AEM.02868-09. Epub 2010 Mar 12.
6
Cyanophycin production in a phycoerythrin-containing marine synechococcus strain of unusual phylogenetic affinity.
Appl Environ Microbiol. 2002 Apr;68(4):1772-7. doi: 10.1128/AEM.68.4.1772-1777.2002.
7
Shifts in Cyanobacterial Strain Dominance during the Onset of Harmful Algal Blooms in Florida Bay, USA.
Microb Ecol. 2015 Aug;70(2):361-71. doi: 10.1007/s00248-014-0564-5. Epub 2015 Feb 7.
8
Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong.
Appl Environ Microbiol. 2015 Nov;81(21):7644-55. doi: 10.1128/AEM.01895-15. Epub 2015 Aug 28.

引用本文的文献

1
Shifts in Cyanobacterial Strain Dominance during the Onset of Harmful Algal Blooms in Florida Bay, USA.
Microb Ecol. 2015 Aug;70(2):361-71. doi: 10.1007/s00248-014-0564-5. Epub 2015 Feb 7.
3
Fluorescently Labeled Virus Probes Show that Natural Virus Populations Can Control the Structure of Marine Microbial Communities.
Appl Environ Microbiol. 1995 Oct;61(10):3623-7. doi: 10.1128/aem.61.10.3623-3627.1995.
5
Distribution and life strategies of two bacterial populations in a eutrophic lake.
Appl Environ Microbiol. 1998 Oct;64(10):3776-83. doi: 10.1128/AEM.64.10.3776-3783.1998.
6
Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains.
Appl Environ Microbiol. 1997 Nov;63(11):4298-303. doi: 10.1128/aem.63.11.4298-4303.1997.
7
Bacterial population dynamics in a meromictic lake.
Appl Environ Microbiol. 1997 Jun;63(6):2181-8. doi: 10.1128/aem.63.6.2181-2188.1997.
8
Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis.
Appl Environ Microbiol. 1994 Sep;60(9):3212-9. doi: 10.1128/aem.60.9.3212-3219.1994.
9
In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique.
Appl Environ Microbiol. 1984 Dec;48(6):1214-20. doi: 10.1128/aem.48.6.1214-1220.1984.
10
Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy.
Appl Environ Microbiol. 1985 Apr;49(4):799-810. doi: 10.1128/aem.49.4.799-810.1985.

本文引用的文献

1
Autotrophic picoplankton in the tropical ocean.
Science. 1983 Jan 21;219(4582):292-5. doi: 10.1126/science.219.4582.292.
2
Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters.
Appl Environ Microbiol. 1982 Jan;43(1):169-76. doi: 10.1128/aem.43.1.169-176.1982.
3
Immunofluorescent Assay for the Marine Ammonium-Oxidizing Bacterium Nitrosococcus oceanus.
Appl Environ Microbiol. 1980 Apr;39(4):913-8. doi: 10.1128/aem.39.4.913-918.1980.
7
Ultrastructure of a marine Synechococcus possessing spinae.
Can J Microbiol. 1981 Mar;27(3):318-29. doi: 10.1139/m81-049.
8
Nonspecific staining: its control in immunofluorescence examination of soil.
Science. 1968 Nov 29;162(3857):1012-4. doi: 10.1126/science.162.3857.1012.
10
Fluorescent-antibody approach to study of rhizobia in soil.
J Bacteriol. 1968 Jun;95(6):1987-92. doi: 10.1128/jb.95.6.1987-1992.1968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验