Suppr超能文献

土壤中添加碳基质的微生物降解的确定性三分之二阶动力学模型。

Deterministic three-half-order kinetic model for microbial degradation of added carbon substrates in soil.

机构信息

Department of Soil and Environmental Sciences, University of California, Riverside, California 92521.

出版信息

Appl Environ Microbiol. 1984 Jan;47(1):167-72. doi: 10.1128/aem.47.1.167-172.1984.

Abstract

The kinetics of mineralization of carbonaceous substrates has been explained by a deterministic model which is applicable to either growth or nongrowth conditions in soil. The mixed-order nature of the model does not require a priori decisions about reaction order, discontinuity period of lag or stationary phase, or correction for endogenous mineralization rates. The integrated equation is simpler than the integrated form of the Monod equation because of the following: (i) only two, rather than four, interdependent constants have to be determined by nonlinear regression analysis, (ii) substrate or product formation can be expressed explicitly as a function of time, (iii) biomass concentration does not have to be known, and (iv) the required initial estimate for the nonlinear regression analysis can be easily obtained from a linearized form rather than from an interval estimate of a differential equation. CO(2) evolution data from soil have been fitted to the model equation. All data except those from irradiated soil gave better fits by residual sum of squares (RSS) by assuming growth in soil was linear (RSS = 0.71) as opposed to exponential (RSS = 2.87). The underlying reasons for growth (exponential versus linear), no growth, and relative degradation rates of substrates are consistent with the basic mechanisms from which the model is derived.

摘要

该模型适用于土壤中生长或非生长条件下的碳素基质矿化动力学。该模型的混合阶性质不需要关于反应阶、滞后或稳定阶段的不连续期、或对内源性矿化率的校正的先验决策。由于以下原因,整合方程比 Monod 方程的整合形式更简单:(i)仅需通过非线性回归分析确定两个而不是四个相互依赖的常数,(ii)基质或产物的形成可以明确表示为时间的函数,(iii)不需要知道生物量浓度,以及(iv)非线性回归分析所需的初始估计值可以很容易地从线性化形式而不是微分方程的区间估计值中获得。已经将土壤中的 CO2 释放数据拟合到模型方程中。除了辐照土壤的数据之外,所有数据都通过假设土壤中的生长是线性的(RSS = 0.71)而不是指数的(RSS = 2.87),通过残差平方和(RSS)给出了更好的拟合。生长(指数与线性)、无生长和基质相对降解率的根本原因与该模型的基本机制一致。

相似文献

1
Deterministic three-half-order kinetic model for microbial degradation of added carbon substrates in soil.
Appl Environ Microbiol. 1984 Jan;47(1):167-72. doi: 10.1128/aem.47.1.167-172.1984.
2
Kinetics of mineralization of organic compounds at low concentrations in soil.
Appl Environ Microbiol. 1986 May;51(5):1028-35. doi: 10.1128/aem.51.5.1028-1035.1986.
3
Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics.
Lett Appl Microbiol. 2009 Apr;48(4):398-401. doi: 10.1111/j.1472-765X.2008.02537.x. Epub 2009 Jan 23.
4
Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve.
Appl Environ Microbiol. 1983 May;45(5):1453-8. doi: 10.1128/aem.45.5.1453-1458.1983.
5
Models for mineralization kinetics with the variables of substrate concentration and population density.
Appl Environ Microbiol. 1984 Jun;47(6):1299-306. doi: 10.1128/aem.47.6.1299-1306.1984.
6
Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil.
Appl Environ Microbiol. 1994 Dec;60(12):4500-8. doi: 10.1128/aem.60.12.4500-4508.1994.
8
An evaluation of substrate degradation patterns in the composting process. Part 2: temperature-corrected profiles.
Waste Manag. 2008;28(10):1751-65. doi: 10.1016/j.wasman.2007.06.019. Epub 2007 Sep 12.
10
Mineralization kinetics of chemicals in soils in relation to environmental conditions.
Ecotoxicol Environ Saf. 1996 Aug;34(3):216-22. doi: 10.1006/eesa.1996.0066.

引用本文的文献

1
Co-metabolism kinetics and electrogenesis change during cyanide degradation in a microbial fuel cell.
RSC Adv. 2018 Dec 4;8(70):40407-40416. doi: 10.1039/c8ra08775j. eCollection 2018 Nov 28.
2
Biodegradation of Pesticides at the Limit: Kinetics and Microbial Substrate Use at Low Concentrations.
Front Microbiol. 2020 Aug 27;11:2107. doi: 10.3389/fmicb.2020.02107. eCollection 2020.
5
Bacterial Growth on Distant Naphthalene Diffusing through Water, Air, and Water-Saturated and Nonsaturated Porous Media.
Appl Environ Microbiol. 1996 Jul;62(7):2286-93. doi: 10.1128/aem.62.7.2286-2293.1996.
6
Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene.
Appl Environ Microbiol. 2006 Feb;72(2):1476-86. doi: 10.1128/AEM.72.2.1476-1486.2006.
7
Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil.
Appl Environ Microbiol. 1994 Dec;60(12):4500-8. doi: 10.1128/aem.60.12.4500-4508.1994.
8
Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil.
Appl Environ Microbiol. 1985 Oct;50(4):1058-63. doi: 10.1128/aem.50.4.1058-1063.1985.

本文引用的文献

1
The Effect of Solid Surfaces upon Bacterial Activity.
J Bacteriol. 1943 Jul;46(1):39-56. doi: 10.1128/jb.46.1.39-56.1943.
2
Relation between Food Concentration and Surface for Bacterial Growth.
J Bacteriol. 1940 Oct;40(4):547-58. doi: 10.1128/jb.40.4.547-558.1940.
3
Conservation in soil of h(2) liberated from n(2) fixation by hup nodules.
Appl Environ Microbiol. 1983 Aug;46(2):304-11. doi: 10.1128/aem.46.2.304-311.1983.
4
Second-order model to predict microbial degradation of organic compounds in natural waters.
Appl Environ Microbiol. 1981 Mar;41(3):603-9. doi: 10.1128/aem.41.3.603-609.1981.
5
Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve.
Appl Environ Microbiol. 1983 May;45(5):1453-8. doi: 10.1128/aem.45.5.1453-1458.1983.
6
Degradation of herbicides by soil micro-organisms.
Soc Appl Bacteriol Symp Ser. 1971;1:233-54. doi: 10.1016/b978-0-12-648050-4.50017-1.
7
The analysis of progress curves for enzyme-catalysed reactions by non-linear regression.
Biochim Biophys Acta. 1977 Apr 12;481(2):297-312. doi: 10.1016/0005-2744(77)90264-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验