Suppr超能文献

海水微生物锰结合率测定中使用的毒物。

Use of poisons in determination of microbial manganese binding rates in seawater.

机构信息

Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, and Marine Biology Research Division A-002, Scripps Institution of Oceanography, La Jolla, California 92093.

出版信息

Appl Environ Microbiol. 1984 Apr;47(4):740-5. doi: 10.1128/aem.47.4.740-745.1984.

Abstract

A method was developed to determine whether microorganisms mediate the precipitation of manganese(II) in the marine environment. Radioactive Mn(II) was used as a tracer to measure the precipitation (binding and oxidation) of Mn(II) [i.e., the Mn(II) trapped on 0.2-mum membrane filters] in the presence and absence of biological poisons. A variety of antibiotics, fixatives, and metabolic inhibitors were tested in laboratory control experiments to select poisons that did not interfere in the chemistry of manganese. The poisons were deemed suitable if (i) they did not complex Mn(II) more strongly than the ion-exchange resin Chelex 100, (ii) they did not interfere in the adsorption of Mn(II) onto synthetic deltaMnO(2) (manganate), (iii) they did not cause desorption of Mn(II) which had been preadsorbed onto synthetic manganate, and (iv) they did not solubilize synthetic manganate. In addition, several known chelators, reducing agents, and buffers normally added to microbiological growth media or used in biochemical assays were tested. Most additions interfered to some extent with manganese chemistry. However, at least one inhibitor, sodium azide, or a mixture of sodium azide, penicillin, and tetracycline was shown to be appropriate for use in field studies of Mn(II) binding. Formaldehyde could also be used in short incubations (1 to 3 h) but was not suitable for longer time course studies. The method was applied to studies of Mn(II) precipitation in Saanich Inlet, British Columbia, Canada. Bacteria were shown to significantly enhance the rate of Mn(II) removal from solution in the manganese-rich particulate layer which occurs just above the oxygen-hydrogen sulfide interface in the water column.

摘要

开发了一种方法来确定微生物是否介导海洋环境中 Mn(II)的沉淀。放射性 Mn(II)被用作示踪剂来测量 Mn(II)的沉淀(结合和氧化)[即在 0.2 微米膜过滤器上捕获的 Mn(II)],在存在和不存在生物毒物的情况下。在实验室对照实验中测试了各种抗生素、固定剂和代谢抑制剂,以选择不会干扰锰化学的毒物。如果毒物 (i) 不会比离子交换树脂 Chelex 100 更强烈地络合 Mn(II),(ii) 不会干扰 Mn(II)吸附到合成 deltaMnO(2)(高锰酸盐)上,(iii) 不会导致已经预吸附到合成高锰酸盐上的 Mn(II)解吸,以及 (iv) 不会溶解合成高锰酸盐,则认为它们是合适的。此外,还测试了几种已知的螯合剂、还原剂和缓冲剂,这些通常添加到微生物生长培养基中或用于生化测定中。大多数添加物在某种程度上干扰了锰化学。然而,至少有一种抑制剂,叠氮化钠,或叠氮化钠、青霉素和四环素的混合物,被证明适合用于 Mn(II)结合的现场研究。甲醛也可以在短时间孵育(1 至 3 小时)中使用,但不适合长时间过程研究。该方法应用于加拿大不列颠哥伦比亚省萨尼奇湾 Mn(II)沉淀的研究。研究表明,细菌显著提高了富含锰的颗粒层中 Mn(II)从溶液中去除的速度,该颗粒层发生在水柱中氧-硫化氢界面之上。

相似文献

1
Use of poisons in determination of microbial manganese binding rates in seawater.
Appl Environ Microbiol. 1984 Apr;47(4):740-5. doi: 10.1128/aem.47.4.740-745.1984.
3
Cobalt(II) Oxidation by the Marine Manganese(II)-Oxidizing Bacillus sp. Strain SG-1.
Appl Environ Microbiol. 1994 Aug;60(8):2949-57. doi: 10.1128/aem.60.8.2949-2957.1994.
5
Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
Chemosphere. 2015 Nov;138:47-59. doi: 10.1016/j.chemosphere.2015.05.032. Epub 2015 Jun 1.
6
Bacteriogenic manganese oxides.
Acc Chem Res. 2010 Jan 19;43(1):2-9. doi: 10.1021/ar800232a.
7
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
8
Application of XPS and solution chemistry analyses to investigate soluble manganese removal by MnO(x)(s)-coated media.
Environ Sci Technol. 2011 Dec 1;45(23):10068-74. doi: 10.1021/es203262n. Epub 2011 Nov 8.
9
Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
Acc Chem Res. 2017 Nov 21;50(11):2706-2717. doi: 10.1021/acs.accounts.7b00343. Epub 2017 Oct 24.
10
Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.
J Hazard Mater. 2016 Mar 5;304:434-40. doi: 10.1016/j.jhazmat.2015.11.019. Epub 2015 Nov 30.

引用本文的文献

2
Manganese oxidation by microbial consortia from sand filters.
Microb Ecol. 1992 Jul;24(1):91-108. doi: 10.1007/BF00171973.
3
Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1.
Appl Environ Microbiol. 2010 Feb;76(4):1224-31. doi: 10.1128/AEM.02473-09. Epub 2009 Dec 28.
4
Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Laboratory Studies.
Appl Environ Microbiol. 1994 Nov;60(11):4032-8. doi: 10.1128/aem.60.11.4032-4038.1994.
5
Positive pressure effect on manganese binding by bacteria in deep-sea hydrothermal plumes.
Appl Environ Microbiol. 1989 Mar;55(3):764-6. doi: 10.1128/aem.55.3.764-766.1989.
6
Microbially Mediated Mn(II) Oxidation in an Oligotrophic Arctic Lake.
Appl Environ Microbiol. 1988 Jun;54(6):1440-5. doi: 10.1128/aem.54.6.1440-1445.1988.
7
Manganese oxidation by spores and spore coats of a marine bacillus species.
Appl Environ Microbiol. 1986 Nov;52(5):1096-100. doi: 10.1128/aem.52.5.1096-1100.1986.
9
Influence of Manganese on Growth of a Sheathless Strain of Leptothrix discophora.
Appl Environ Microbiol. 1985 Mar;49(3):556-62. doi: 10.1128/aem.49.3.556-562.1985.

本文引用的文献

1
Bacteriology of Manganese Nodules: I. Bacterial Action on Manganese in Nodule Enrichments.
Appl Microbiol. 1963 Jan;11(1):15-9. doi: 10.1128/am.11.1.15-19.1963.
2
Manganese binding and oxidation by spores of a marine bacillus.
J Bacteriol. 1982 Aug;151(2):1027-34. doi: 10.1128/jb.151.2.1027-1034.1982.
3
Recent advances in the study of the sulfate-reducing bacteria.
Bacteriol Rev. 1965 Dec;29(4):425-41. doi: 10.1128/br.29.4.425-441.1965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验