Suppr超能文献

明尼苏达州泥炭地中的甲烷生成。

Methane production in Minnesota peatlands.

机构信息

University of Minnesota, Gray Freshwater Biological Institute, Navarre, Minnesota 55392.

出版信息

Appl Environ Microbiol. 1984 Jun;47(6):1266-71. doi: 10.1128/aem.47.6.1266-1271.1984.

Abstract

Rates of methane production in Minnesota peats were studied. Surface (10- to 25-cm) peats produced an average of 228 nmol of CH(4) per g (dry weight) per h at 25 degrees C and ambient pH. Methanogenesis rates generally decreased with depth in ombrotrophic peats, but on occasion were observed to rise within deeper layers of certain fen peats. Methane production was temperature dependent, increasing with increasing temperature (4 to 30 degrees C), except in peats from deeper layers. Maximal methanogenesis from these deeper regions occurred at 12 degrees C. Methane production rates were also pH dependent. Two peats with pHs of 3.8 and 4.3 had an optimum rate of methane production at pH 6.0. The addition to peat of glucose and H(2)-CO(2) stimulated methanogenesis, whereas the addition of acetate inhibited methanogenesis. Cysteine-sulfide, nitrogen-phosphorus-trace metals, and vitamins-yeast extract affected methane production very little. Various gases were found to be trapped or dissolved (or both) within peatland waters. Dissolved methane increased linearly to a depth of 210 cm. The accumulation of metabolic end products produced within peat bogs appears to be an important mechanism limiting carbon turnover in peatland environments.

摘要

明尼苏达州泥炭中的甲烷生成速率研究。在 25°C 和环境 pH 值条件下,表层(10-25cm)泥炭的甲烷生成速率平均为每克(干重)每小时 228nmol CH(4)。在富营养泥炭中,甲烷生成速率通常随深度的增加而降低,但在某些沼泽泥炭的较深层中,有时会观察到甲烷生成速率上升。甲烷生成速率随温度升高而升高(4-30°C),但在较深层的泥炭中除外。这些深层区域的最大甲烷生成速率出现在 12°C。甲烷生成速率也受 pH 值影响。pH 值为 3.8 和 4.3 的两种泥炭在 pH 值为 6.0 时具有最佳的甲烷生成速率。向泥炭中添加葡萄糖和 H(2)-CO(2) 可刺激甲烷生成,而添加乙酸盐则会抑制甲烷生成。半胱氨酸-亚硫酸盐、氮磷微量元素和维生素-酵母提取物对甲烷生成的影响很小。发现各种气体在泥炭地水中被捕获或溶解(或两者兼有)。溶解甲烷的含量在线性增加到 210cm 的深度。在泥炭沼泽中产生的代谢终产物的积累似乎是限制泥炭地环境中碳转化的一个重要机制。

相似文献

1
Methane production in Minnesota peatlands.
Appl Environ Microbiol. 1984 Jun;47(6):1266-71. doi: 10.1128/aem.47.6.1266-1271.1984.
5
Carbon content and other soil properties of near-surface peats before and after peatland restoration.
PeerJ. 2024 Apr 18;12:e17113. doi: 10.7717/peerj.17113. eCollection 2024.
7
Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
Appl Environ Microbiol. 2018 Jan 17;84(3). doi: 10.1128/AEM.02218-17. Print 2018 Feb 1.
8
Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.
Environ Sci Technol. 2011 Dec 1;45(23):9984-9. doi: 10.1021/es201777u. Epub 2011 Nov 2.
9
Seasonal changes in methanogenesis and methanogenic community in three peatlands, new york state.
Front Microbiol. 2012 Mar 6;3:81. doi: 10.3389/fmicb.2012.00081. eCollection 2012.
10
Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
Glob Chang Biol. 2017 Dec;23(12):5398-5411. doi: 10.1111/gcb.13806. Epub 2017 Jul 28.

引用本文的文献

1
Synergy and competition during the anaerobic degradation of N-acetylglucosamine in a methane-emitting, subarctic, pH-neutral fen.
Front Microbiol. 2024 Dec 11;15:1428517. doi: 10.3389/fmicb.2024.1428517. eCollection 2024.
2
Effect of short-term warming and drought on the methanogenic communities in degraded peatlands in Zoige Plateau.
Front Microbiol. 2022 Oct 28;13:880300. doi: 10.3389/fmicb.2022.880300. eCollection 2022.
3
Constraints on microbial communities, decomposition and methane production in deep peat deposits.
PLoS One. 2020 Feb 6;15(2):e0223744. doi: 10.1371/journal.pone.0223744. eCollection 2020.
4
The transformation of macrophyte-derived organic matter to methane relates to plant water and nutrient contents.
Limnol Oceanogr. 2019 Jul;64(4):1737-1749. doi: 10.1002/lno.11148. Epub 2019 Mar 4.
5
Methane formation in tropical reservoirs predicted from sediment age and nitrogen.
Sci Rep. 2019 Jul 29;9(1):11017. doi: 10.1038/s41598-019-47346-7.
7
Methane emissions from natural wetlands.
Environ Monit Assess. 1996 Sep;42(1-2):143-61. doi: 10.1007/BF00394047.
9
Spatial and temporal variations of dissolved gases (CH4, CO 2, and O 2) in peat cores.
Microb Ecol. 1996 Jan;31(1):57-66. doi: 10.1007/BF00175075.

本文引用的文献

1
Comparison of in situ and in vitro rates of methane release in freshwater sediments.
Appl Environ Microbiol. 1980 Aug;40(2):287-93. doi: 10.1128/aem.40.2.287-293.1980.
2
Anaerobic techniques used in studies on methanogenesis: principles and applications.
Antonie Van Leeuwenhoek. 1980;46(1):105-6. doi: 10.1007/BF00422242.
4
Methane production in shallow-water, tropical marine sediments.
Appl Microbiol. 1975 Oct;30(4):602-8. doi: 10.1128/am.30.4.602-608.1975.
6
Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments.
Appl Environ Microbiol. 1977 Feb;33(2):275-81. doi: 10.1128/aem.33.2.275-281.1977.
7
Temperature limitation of methanogenesis in aquatic sediments.
Appl Environ Microbiol. 1976 Jan;31(1):99-107. doi: 10.1128/aem.31.1.99-107.1976.
9
Biogenesis of methane.
Annu Rev Microbiol. 1977;31:309-41. doi: 10.1146/annurev.mi.31.100177.001521.
10
Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments.
Appl Environ Microbiol. 1977 Feb;33(2):312-8. doi: 10.1128/aem.33.2.312-318.1977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验