Department of Civil Engineering, University of New Hampshire, Durham, New Hampshire 03824.
Appl Environ Microbiol. 1985 Jul;50(1):120-4. doi: 10.1128/aem.50.1.120-124.1985.
This research documents an effect of reactor turbulence on the ability of gram-negative wastewater biofilm bacteria to actively transport l-aspartate via a binding-protein-mediated transport system. Biofilms which were not preadapted to turbulence and which possessed two separate and distinct aspartate transport systems (systems 1 and 2) were subjected to a turbulent flow condition in a hydrodynamically defined closed-loop reactor system. A shear stress treatment of 3.1 N . m for 10 min at a turbulent Reynolds number (Re = 11,297) inactivated the low-affinity, high-capacity binding-protein-mediated transport system (system 2) and resolved the high-affinity, low-capacity membrane-bound proton symport system (system 1). The K(t) and V(max) values for the resolved system were statistically similar to K(t) and V(max) values for system 1 when system 2 was inactivated either by osmotic shock or arsenate, two treatments which are known to inactivate binding-protein-mediated transport systems. We hypothesize that shear stress disrupts system 2 by deforming the outer membranes of the firmly adhered gram-negative bacteria.
本研究记录了反应堆湍流对革兰氏阴性废水生物膜细菌通过结合蛋白介导的转运系统主动转运 L-天冬氨酸能力的影响。未预先适应湍流且具有两种独立且不同的天冬氨酸转运系统(系统 1 和系统 2)的生物膜在水动力定义的闭环反应器系统中受到湍流流条件的影响。在湍流雷诺数(Re = 11,297)下,剪切应力处理 3.1 N. m 10 分钟,使低亲和力、高容量结合蛋白介导的转运系统(系统 2)失活,并解析了高亲和力、低容量膜结合质子协同转运系统(系统 1)。解析系统的 K(t) 和 V(max) 值与系统 1 的 K(t) 和 V(max) 值在系统 2 失活时统计上相似,系统 2 失活是通过渗透压冲击或砷酸盐实现的,这两种处理已知会使结合蛋白介导的转运系统失活。我们假设剪切应力通过变形牢固附着的革兰氏阴性细菌的外膜来破坏系统 2。