Suppr超能文献

硫酸盐依赖的产甲烷菌(Methanosarcina barkeri)和脱硫弧菌(Desulfovibrio vulgaris)之间的 H(2)种间转移,在乙酸或甲醇共培养代谢过程中。

Sulfate-Dependent Interspecies H(2) Transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during Coculture Metabolism of Acetate or Methanol.

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and Michigan Biotechnology Institute and Departments of Biochemistry and Microbiology, Michigan State University, East Lansing, Michigan 48824.

出版信息

Appl Environ Microbiol. 1985 Sep;50(3):589-94. doi: 10.1128/aem.50.3.589-594.1985.

Abstract

We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was </=2 mumol/liter. The fractions of CO(2) produced from [C]methanol and 2-[C]acetate increased from 0.26 and 0.16, respectively, in pure culture to 0.59 and 0.33, respectively, in coculture. Under these conditions, approximately 42% of the available electron equivalents derived from methanol or acetate were transferred and were utilized by D. vulgaris to reduce approximately 33 mumol of sulfate per 100 mumol of substrate consumed. As a direct consequence, methane formation in cocultures was two-thirds that observed in pure cultures. The addition of 5.0 mM sodium molybdate or exogenous H(2) decreased the effects of D. vulgaris on the metabolism of M. barkeri. An analysis of growth and carbon and electron flow patterns demonstrated that sulfate-dependent interspecies H(2) transfer from M. barkeri to D. vulgaris resulted in less methane production, increased CO(2) formation, and sulfide formation from substrates not directly utilized by the sulfate reducer as electron donors for energy metabolism and growth.

摘要

我们比较了 Methanosarcina barkeri 在存在和不存在 Desulfovibrio vulgaris 时甲醇和乙酸的代谢。硫酸盐还原菌不能将甲醇或乙酸用作纯培养中能量代谢的电子供体,但能够在共培养中生长。M. barkeri 的纯培养物在乙酸或甲醇生长过程中,在培养物顶部空间中产生高达 10 mumol 的 H(2)。在与 D. vulgaris 的共培养中,气态 H(2)浓度为 </=2 mumol/liter。来自 [C]甲醇和 2-[C]乙酸的 CO(2)产生分数分别从纯培养中的 0.26 和 0.16 增加到共培养中的 0.59 和 0.33。在这些条件下,来自甲醇或乙酸的约 42%的可用电子当量被转移,并被 D. vulgaris 利用来还原约 33 mumol 的硫酸盐/100 mumol 底物。因此,共培养物中的甲烷形成量是纯培养物的三分之二。添加 5.0 mM 钼酸钠或外源 H(2) 降低了 D. vulgaris 对 M. barkeri 代谢的影响。对生长和碳及电子流动模式的分析表明,硫酸盐依赖的种间 H(2)从 M. barkeri 转移到 D. vulgaris,导致甲烷生成减少、CO(2)生成增加以及硫酸盐还原菌不能直接用作能量代谢和生长的电子供体的底物生成硫化物。

相似文献

7
Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri.
Appl Environ Microbiol. 1983 Jan;45(1):161-8. doi: 10.1128/aem.45.1.161-168.1983.
8
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.
Appl Environ Microbiol. 2014 Aug;80(15):4599-605. doi: 10.1128/AEM.00895-14.
9
Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism.
Microbiology (Reading). 2010 Sep;156(Pt 9):2746-2756. doi: 10.1099/mic.0.038539-0. Epub 2010 Jun 24.

引用本文的文献

1
Limited Mechanistic Link Between the Monod Equation and Methanogen Growth: a Perspective from Metabolic Modeling.
Microbiol Spectr. 2022 Apr 27;10(2):e0225921. doi: 10.1128/spectrum.02259-21. Epub 2022 Mar 3.
2
Sulfate Alters the Competition Among Microbiome Members of Sediments Chronically Exposed to Asphalt.
Front Microbiol. 2020 Sep 29;11:556793. doi: 10.3389/fmicb.2020.556793. eCollection 2020.
3
Life on the thermodynamic edge: Respiratory growth of an acetotrophic methanogen.
Sci Adv. 2019 Aug 21;5(8):eaaw9059. doi: 10.1126/sciadv.aaw9059. eCollection 2019 Aug.
7
Community and Proteomic Analysis of Anaerobic Consortia Converting Tetramethylammonium to Methane.
Archaea. 2017 Dec 17;2017:2170535. doi: 10.1155/2017/2170535. eCollection 2017.
8
Editorial: Wired for Life.
Front Microbiol. 2016 May 10;7:662. doi: 10.3389/fmicb.2016.00662. eCollection 2016.
9
Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?
Front Microbiol. 2015 May 27;6:492. doi: 10.3389/fmicb.2015.00492. eCollection 2015.
10
Microbial community dynamics and stability during an ammonia-induced shift to syntrophic acetate oxidation.
Appl Environ Microbiol. 2014 Jun;80(11):3375-83. doi: 10.1128/AEM.00166-14. Epub 2014 Mar 21.

本文引用的文献

1
Production and Consumption of H(2) during Growth of Methanosarcina spp. on Acetate.
Appl Environ Microbiol. 1985 Jan;49(1):247-9. doi: 10.1128/aem.49.1.247-249.1985.
2
Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
Appl Environ Microbiol. 1983 Jan;45(1):187-92. doi: 10.1128/aem.45.1.187-192.1983.
3
Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.
Appl Environ Microbiol. 1982 Jun;43(6):1373-9. doi: 10.1128/aem.43.6.1373-1379.1982.
4
Intermediary metabolism of organic matter in the sediments of a eutrophic lake.
Appl Environ Microbiol. 1982 Mar;43(3):552-60. doi: 10.1128/aem.43.3.552-560.1982.
5
A diagnostic reaction of Desulphovibrio desulphuricans.
Nature. 1959 Feb 14;183(4659):481-2. doi: 10.1038/183481b0.
9
10
Hydrogen-using bacteria in a methanogenic acetate enrichment culture.
J Appl Bacteriol. 1984 Feb;56(1):125-9. doi: 10.1111/j.1365-2672.1984.tb04703.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验