Werner Jeffrey J, Garcia Marcelo L, Perkins Sarah D, Yarasheski Kevin E, Smith Samuel R, Muegge Brian D, Stadermann Frank J, DeRito Christopher M, Floss Christine, Madsen Eugene L, Gordon Jeffrey I, Angenent Largus T
Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA.
Appl Environ Microbiol. 2014 Jun;80(11):3375-83. doi: 10.1128/AEM.00166-14. Epub 2014 Mar 21.
Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity.
厌氧消化器依赖于由复杂的互营微生物群落介导的平行代谢途径的多样性和分布,以维持强劲且最佳的性能。我们使用中温猪粪消化器,通过增加氨负荷进行实验,以诱导从乙酸裂解产甲烷作用转变为互营乙酸氧化这一替代的乙酸消耗途径。与对照消化器相比,我们在消化器3年的运行期间观察到细菌16S rRNA基因含量和功能基因库的变化。在第一年,在相同的启动条件下,所有生物反应器在细菌系统型含量、系统发育结构和均匀度方面都非常相似。当我们通过提高氨浓度或温度来扰动消化器时,细菌系统型的分布变得更加不均匀,而一旦互营乙酸氧化使实验生物反应器恢复稳定运行,随后群落又会回到更加均匀的状态。互营乙酸氧化的出现与从乙酸裂解产甲烷菌到氢营养型产甲烷菌的部分转变同时发生。我们的16S rRNA基因分析还表明,以乙酸为食的富集实验所得到的群落并不能代表生物反应器群落。对群落DNA的鸟枪法测序分析表明,互营乙酸氧化是由一个异质群落进行的,而不是由具有这种代谢能力的富集培养物代表的特定关键种群进行的。
Appl Environ Microbiol. 2014-6
Water Sci Technol. 2011
Microb Biotechnol. 2018-6-12
Appl Environ Microbiol. 2016-12-30
Appl Environ Microbiol. 2024-2-21
Microorganisms. 2021-5-28
Microbes Environ. 2008
Proc Natl Acad Sci U S A. 2011-2-22
Nat Methods. 2010-5
PLoS One. 2010-3-10
Bioinformatics. 2009-11-13