Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557.
Appl Environ Microbiol. 1991 Feb;57(2):473-9. doi: 10.1128/aem.57.2.473-479.1991.
By using microautoradiography, light-stimulated utilization of dissolved amino acids for natural marine phytoplankton assemblages was demonstrated. The <2-mum-size (diameter) picoplankton, known to be a dominant fraction of marine primary production, revealed a widespread capability for this process. Autofluorescent (chlorophyll a-containing) picoplankton and some larger phytoplankton from diverse oceanic locations, as well as isolates of the representative cyanobacterial picoplankton Synechococcus spp. (WH7803, WH8101), showed light-stimulated incorporation of amino acids at trace concentrations. Dark-mediated amino acid utilization was dominated by nonfluorescent bacterial populations. Among autofluorescent picoplankton, light-stimulated exceeded dark-mediated amino acid incorporation by 5 to 75%; light-stimulated amino acid incorporation was only partially blocked by the photosystem II inhibitor 3(3,4-dichloro-phenyl)-1,1-dimethy-lurea (2 x 10 M), suggesting a photoheterotrophic incorporation mechanism. Parallel light versus dark incubations with glucose and mannitol indicated a lack of light-stimulated utilization of these nonnitrogenous compounds. Since marine primary production is frequently nitrogen limited, light-mediated auxotrophic utilization of amino acids and possibly other dissolved organic nitrogen (DON) constituents may represent exploitation of the relatively large DON pool in the face of dissolved inorganic nitrogen depletion. This process (i) increases the efficiency of DON retention at the base of oceanic food webs and (ii) may in part be responsible for relatively high rates of picoplankton production under conditions of chronic dissolved inorganic nitrogen limitation. Picoplanktonic recycling of organic matter via this process has important ramifications with respect to trophic transfer via the "microbial loop."
通过使用微量放射自显影技术,证明了溶解氨基酸被天然海洋浮游植物组合利用的情况。<2 微米大小(直径)的微微型浮游生物,是海洋初级生产力的主要部分,它显示出这种过程的广泛能力。来自不同海洋地点的具有自发荧光(含叶绿素 a)的微微型浮游生物和一些较大的浮游植物,以及代表性蓝细菌微微型浮游生物聚球藻属(Synechococcus spp.)的分离株(WH7803、WH8101),在痕量浓度下显示出光刺激下氨基酸的掺入。黑暗介导的氨基酸利用主要由非荧光细菌群体控制。在自发荧光微微型浮游生物中,光刺激下的氨基酸掺入量超过黑暗介导的氨基酸掺入量 5 到 75%;光刺激下的氨基酸掺入仅部分被 photosystem II 抑制剂 3(3,4-dichloro-phenyl)-1,1-dimethy-lurea(2 x 10 M)阻断,表明存在光异养掺入机制。平行的光与黑暗孵育葡萄糖和甘露醇表明,这些非氮化合物没有光刺激的利用。由于海洋初级生产力经常受到氮的限制,因此,在溶解无机氮耗尽的情况下,光介导的氨基酸和可能其他溶解有机氮(DON)成分的辅助利用可能代表对相对较大的 DON 池的利用。这个过程 (i) 提高了 DON 在海洋食物网底部的保留效率,以及 (ii) 可能部分解释了在慢性溶解无机氮限制条件下相对较高的微微型浮游生物生产力。通过这个过程进行的物质循环对通过“微生物环”进行的营养转移具有重要意义。