Suppr超能文献

土壤和根际细菌对不同铁载体的利用和铁摄取。

Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria.

机构信息

Department of Microbiology and Plant Pathology and Department of Soil and Water Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.

出版信息

Appl Environ Microbiol. 1992 Jan;58(1):119-24. doi: 10.1128/aem.58.1.119-124.1992.

Abstract

The differential availabilities of the hydroxamate siderophores ferrioxamine B (FOB) and ferrichrome (FC) and the pseudobactin siderophores St3, 7NSK(2), and WCS 358 as sources of Fe for soil and rhizosphere bacteria were studied. About 20% of the total bacterial CFU from the rhizospheres of four plant species were able to use FOB as the sole Fe source in an Fe-deficient medium, while about 12, 10, 2, and > 1% were able to use FC and pseudobactins 7NSK(2), St3, and WCS 358, respectively. Of the 165 colonies isolated from plates containing pseudobactins, 64 were able to use the pseudobactin on which they were isolated as the sole Fe source in pure culture. Cross-feeding tests showed that almost all of these 64 strains were also able to use at least one of the other siderophores studied (pseudobactin, FOB, or FC). Pseudomonas putida StS2, Pseudomonas maltophilia 7NM1, and Vibrio fluvialis WS1, which were originally isolated on pseudobactins St3, 7NSK(2), and WCS 358, respectively, were selected for their ability to grow with pseudobactin St3 as the sole Fe source. They incorporated Fe mediated by pseudobactin St3 at various rates (71.5, 4, and 23 pmol/min/mg [dry weight] of cells, respectively). Similarly, P. putida St3 was shown to incorporate Fe mediated by FOB and FC. We suggest that the ability of bacteria to utilize a large variety of siderophores confers an ecological advantage.

摘要

我们研究了羟肟酸盐类铁载体、去铁胺 B(FOB)和去铁酮(FC)以及假菌素类铁载体、St3、7NSK(2) 和 WCS 358 作为土壤和根际细菌铁源的差异有效性。在缺铁培养基中,四种植物根际中约 20%的总细菌 CFU 能够利用 FOB 作为唯一的铁源,而约 12%、10%、2%和>1%的细菌能够分别利用 FC 和假菌素 7NSK(2)、St3 和 WCS 358。在含有假菌素的平板上分离的 165 个菌落中,有 64 个能够在纯培养中利用其分离出的假菌素作为唯一的铁源。交叉喂养试验表明,这些 64 株菌几乎都能够利用研究的其他铁载体(假菌素、FOB 或 FC)中的至少一种。最初分别从假菌素 St3、7NSK(2) 和 WCS 358 上分离的恶臭假单胞菌 StS2、麦芽糖假单胞菌 7NM1 和弗氏弧菌 WS1 因其能够利用假菌素 St3 作为唯一的铁源而被选中。它们以不同的速率(分别为 71.5、4 和 23 pmol/min/mg[干重]的细胞)利用假菌素 St3 介导的铁。同样,证明恶臭假单胞菌 St3 能够利用 FOB 和 FC 介导的铁。我们认为细菌利用各种铁载体的能力赋予了它们生态优势。

相似文献

1
Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria.
Appl Environ Microbiol. 1992 Jan;58(1):119-24. doi: 10.1128/aem.58.1.119-124.1992.
2
Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere.
Appl Environ Microbiol. 1999 Dec;65(12):5357-63. doi: 10.1128/AEM.65.12.5357-5363.1999.
6
Siderophore Utilization by Bradyrhizobium japonicum.
Appl Environ Microbiol. 1993 May;59(5):1688-90. doi: 10.1128/aem.59.5.1688-1690.1993.
8
Utilization of microbial siderophores in iron acquisition by oat.
Plant Physiol. 1988 Jul;87(3):680-5. doi: 10.1104/pp.87.3.680.
9
Siderophore production in pseudomonas SP. strain SP3 enhances iron acquisition in apple rootstock.
J Appl Microbiol. 2022 Aug;133(2):720-732. doi: 10.1111/jam.15591. Epub 2022 May 9.

引用本文的文献

2
virulence: a current view.
Front Microbiol. 2024 Apr 29;15:1385631. doi: 10.3389/fmicb.2024.1385631. eCollection 2024.
3
Uranium Biogeochemistry in the Rhizosphere of a Contaminated Wetland.
Environ Sci Technol. 2024 Apr 9;58(14):6381-6390. doi: 10.1021/acs.est.3c10481. Epub 2024 Mar 28.
5
Bacterial siderophores in community and host interactions.
Nat Rev Microbiol. 2020 Mar;18(3):152-163. doi: 10.1038/s41579-019-0284-4. Epub 2019 Nov 20.
6
Iron and Virulence in : All We Know So Far.
Front Cell Infect Microbiol. 2018 Nov 12;8:401. doi: 10.3389/fcimb.2018.00401. eCollection 2018.
7
Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia.
Front Plant Sci. 2016 Jul 29;7:1088. doi: 10.3389/fpls.2016.01088. eCollection 2016.
9
Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.
PLoS One. 2015 Mar 10;10(3):e0117906. doi: 10.1371/journal.pone.0117906. eCollection 2015.
10
Engineering rhizobial bioinoculants: a strategy to improve iron nutrition.
ScientificWorldJournal. 2013 Nov 6;2013:315890. doi: 10.1155/2013/315890.

本文引用的文献

1
Utilization of microbial siderophores in iron acquisition by oat.
Plant Physiol. 1988 Jul;87(3):680-5. doi: 10.1104/pp.87.3.680.
2
Iron-Binding Catechols and Virulence in Escherichia coli.
Infect Immun. 1973 Mar;7(3):445-56. doi: 10.1128/iai.7.3.445-456.1973.
3
Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
J Gen Microbiol. 1989 Feb;135(2):257-63. doi: 10.1099/00221287-135-2-257.
5
Microbial iron compounds.
Annu Rev Biochem. 1981;50:715-31. doi: 10.1146/annurev.bi.50.070181.003435.
6
Siderophore utilization and iron uptake by Rhodopseudomonas sphaeroides.
Arch Biochem Biophys. 1984 Oct;234(1):178-86. doi: 10.1016/0003-9861(84)90339-4.
7
Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains.
J Bacteriol. 1988 Oct;170(10):4865-73. doi: 10.1128/jb.170.10.4865-4873.1988.
8
Isolation of a membrane associated iron chelator from Pseudomonas aeruginosa.
Biochim Biophys Acta. 1988 Apr 22;939(3):493-502. doi: 10.1016/0005-2736(88)90096-x.
9
High-performance liquid chromatography of siderophores from fungi.
Biol Met. 1988;1(1):9-17. doi: 10.1007/BF01128012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验