Suppr超能文献

营养物质对贫营养化湖水中浮游细菌特定生长率的影响。

Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures.

机构信息

W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060.

出版信息

Appl Environ Microbiol. 1992 Jan;58(1):150-6. doi: 10.1128/aem.58.1.150-156.1992.

Abstract

The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-mum-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganic phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.

摘要

研究了有机和无机养分添加对贫营养湖水中细菌浮游生物特定生长率的影响。湖水首先通过 0.8 微米孔径的过滤器(预筛选),以去除噬菌生物并最大程度地减少藻类的混杂影响。特定生长率是通过 36 小时内细菌数量和生物量的变化来计算的。通过使用青霉素单独测量摄食损失,对未受干扰的对照样品中的总特定生长率进行了估计。单独向预筛选水中添加混合有机底物并没有显著增加细菌浮游生物的特定生长率。在四个实验中的三个实验中,单独添加无机磷显著增加了一个或两个特定生长率,一个实验显示有机底物的二次刺激。磷添加的刺激作用与湖水中碱性磷酸酶活性最高时同时达到最大。由于已经证明在其他磷缺乏系统中,细菌在无机磷吸收中占主导地位,因此磷而不是有机碳可以限制细菌浮游生物生长的证明表明,浮游植物和细菌浮游生物之间存在直接的无机磷竞争。

相似文献

1
Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures.
Appl Environ Microbiol. 1992 Jan;58(1):150-6. doi: 10.1128/aem.58.1.150-156.1992.
2
Nutrient and temperature limitation of bacterioplankton growth in temperate lakes.
Microb Ecol. 2005 Feb;49(2):245-56. doi: 10.1007/s00248-004-0259-4. Epub 2005 Jun 17.
5
Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake.
Appl Environ Microbiol. 1996 Sep;62(9):3251-8. doi: 10.1128/aem.62.9.3251-3258.1996.
6
Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake.
Appl Environ Microbiol. 1991 Jul;57(7):2074-8. doi: 10.1128/aem.57.7.2074-2078.1991.
7
Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth.
Microb Ecol. 1995 May;29(3):221-30. doi: 10.1007/BF00164886.
8
Nutrient regeneration mediated by extracellular enzymes in water column and interstitial water through a microcosm experiment.
Sci Total Environ. 2019 Jun 20;670:982-992. doi: 10.1016/j.scitotenv.2019.03.297. Epub 2019 Mar 20.
9
Experimental evaluation of conversion factors for the [h]thymidine incorporation assay of bacterial secondary productivity.
Appl Environ Microbiol. 1988 Aug;54(8):2018-26. doi: 10.1128/aem.54.8.2018-2026.1988.

引用本文的文献

2
Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.
Microb Ecol. 1994 Jan;27(1):1-17. doi: 10.1007/BF00170110.
3
4
Growth limitation of planktonic bacteria in a large mesotrophic lake.
Microb Ecol. 1995 Jul;30(1):89-104. doi: 10.1007/BF00184516.
5
Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth.
Microb Ecol. 1995 May;29(3):221-30. doi: 10.1007/BF00164886.
8
Growth response of soda lake bacterial communities to simulated rainfall.
Microb Ecol. 2008 Feb;55(2):194-211. doi: 10.1007/s00248-007-9267-5. Epub 2007 Jul 6.
9
Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake.
Appl Environ Microbiol. 1996 Sep;62(9):3251-8. doi: 10.1128/aem.62.9.3251-3258.1996.
10
Uncoupling of bacterioplankton and phytoplankton production in fresh waters is affected by inorganic nutrient limitation.
Appl Environ Microbiol. 1994 Jun;60(6):2086-93. doi: 10.1128/aem.60.6.2086-2093.1994.

本文引用的文献

1
Temperature regulation of bacterial activity during the spring bloom in newfoundland coastal waters.
Science. 1986 Jul 18;233(4761):359-61. doi: 10.1126/science.233.4761.359.
2
Microscale patchiness of nutrients in plankton communities.
Science. 1982 May 14;216(4547):729-30. doi: 10.1126/science.216.4547.729.
3
Microscale nutrient patches produced by zooplankton.
Proc Natl Acad Sci U S A. 1982 Aug;79(16):5001-5. doi: 10.1073/pnas.79.16.5001.
4
Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake.
Appl Environ Microbiol. 1991 Jul;57(7):2074-8. doi: 10.1128/aem.57.7.2074-2078.1991.
5
Experimental evaluation of conversion factors for the [h]thymidine incorporation assay of bacterial secondary productivity.
Appl Environ Microbiol. 1988 Aug;54(8):2018-26. doi: 10.1128/aem.54.8.2018-2026.1988.
6
Impact of storms on heterotrophic activity of epilimnetic bacteria in a southwestern reservoir.
Appl Environ Microbiol. 1986 Jun;51(6):1259-63. doi: 10.1128/aem.51.6.1259-1263.1986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验