Suppr超能文献

高海拔浮游细菌群落结构和代谢对实验性营养富化的差异响应。

Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment.

机构信息

Marine Science Institute and Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America.

出版信息

PLoS One. 2011 Mar 31;6(3):e18320. doi: 10.1371/journal.pone.0018320.

Abstract

Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.

摘要

大气沉降导致高海拔淡水生态系统的营养物质富化在全球范围内不断增加,而细菌是这些贫营养环境中有机质代谢的关键途径。我们在一个高海拔湖泊(美国内华达山脉的翡翠湖)中进行了两次不同的原位微宇宙实验,以评估细菌浮游生物的生长、碳利用和群落结构对硝酸盐和磷酸盐短期富化的反应。第一次实验是在冰融化后立即进行的,采用黑暗稀释培养法直接评估营养物质对细菌浮游生物生长和雪融化期间陆地溶解有机质消耗的影响。第二次实验是在秋季翻转期间在透明微宇宙中进行的,研究了在没有人为干预的微生物群落中,细菌浮游生物如何对与浮游植物衍生的有机物质同时增加的营养物质做出反应。在这两个实验中,磷酸盐富化(而非硝酸盐)导致细菌浮游生物生长显著增加,改变了颗粒有机物质的化学计量,并诱导了细菌群落组成的变化,包括放线菌的相对丰度持续下降。黑暗稀释培养法显示,磷酸盐富化后,溶解有机碳的去除量显著增加。在透明微宇宙中,营养物质富化对叶绿素、碳和溶解有机物质荧光特性的浓度没有影响,这表明细菌浮游生物的反应与浮游植物的反应无关。这些结果表明,在生产力较低的高海拔生境中,细菌浮游生物群落可以迅速改变其分类组成和代谢,以响应短期的磷酸盐富化。我们的结果强调了磷在贫营养湖泊生态系统中的关键作用,阐明了细菌浮游生物的营养限制性质,并强调在这些生境中评价富营养化时应纳入异养微生物群落和过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c1f/3069079/08015dc7c53c/pone.0018320.g001.jpg

相似文献

3
Nutrient and temperature limitation of bacterioplankton growth in temperate lakes.
Microb Ecol. 2005 Feb;49(2):245-56. doi: 10.1007/s00248-004-0259-4. Epub 2005 Jun 17.
5
Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios.
Microb Ecol. 2006 Aug;52(2):358-64. doi: 10.1007/s00248-006-9013-4. Epub 2006 May 12.
6
Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China.
Sci Total Environ. 2016 Jun 15;556:242-51. doi: 10.1016/j.scitotenv.2016.02.199. Epub 2016 Mar 11.
9
Phosphorus use by planktonic communities in a large regulated Mediterranean river.
Sci Total Environ. 2012 Jun 1;426:180-7. doi: 10.1016/j.scitotenv.2012.03.032. Epub 2012 Apr 13.

引用本文的文献

1
Local-Scale Damming Impact on the Planktonic Bacterial and Eukaryotic Assemblages in the upper Yangtze River.
Microb Ecol. 2023 May;85(4):1323-1337. doi: 10.1007/s00248-022-02012-w. Epub 2022 Apr 18.
2
Synchrony of Eukaryotic and Prokaryotic Planktonic Communities in Three Seasonally Sampled Austrian Lakes.
Front Microbiol. 2018 Jun 15;9:1290. doi: 10.3389/fmicb.2018.01290. eCollection 2018.
3
Nutrient Stoichiometry Shapes Microbial Community Structure in an Evaporitic Shallow Pond.
Front Microbiol. 2017 May 30;8:949. doi: 10.3389/fmicb.2017.00949. eCollection 2017.
4
Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment.
Front Microbiol. 2015 Apr 1;6:246. doi: 10.3389/fmicb.2015.00246. eCollection 2015.
6
Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.
PLoS One. 2013 Apr 4;8(4):e60223. doi: 10.1371/journal.pone.0060223. Print 2013.
8
Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils.
J Microbiol. 2012 Dec;50(6):916-24. doi: 10.1007/s12275-012-2636-x. Epub 2012 Dec 30.

本文引用的文献

2
The ecology of Cytophaga-Flavobacteria in aquatic environments.
FEMS Microbiol Ecol. 2002 Feb 1;39(2):91-100. doi: 10.1111/j.1574-6941.2002.tb00910.x.
4
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.
Nucleic Acids Res. 2007;35(21):7188-96. doi: 10.1093/nar/gkm864. Epub 2007 Oct 18.
5
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Appl Environ Microbiol. 2007 Aug;73(16):5261-7. doi: 10.1128/AEM.00062-07. Epub 2007 Jun 22.
6
Modulation of microbial predator-prey dynamics by phosphorus availability: growth patterns and survival strategies of bacterial phylogenetic clades.
FEMS Microbiol Ecol. 2007 Apr;60(1):40-50. doi: 10.1111/j.1574-6941.2006.00274.x. Epub 2007 Jan 24.
7
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics. 2006 Nov 1;22(21):2688-90. doi: 10.1093/bioinformatics/btl446. Epub 2006 Aug 23.
8
Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios.
Microb Ecol. 2006 Aug;52(2):358-64. doi: 10.1007/s00248-006-9013-4. Epub 2006 May 12.
9
Effect of nutrient loading on bacterioplankton community composition in lake mesocosms.
Microb Ecol. 2006 Feb;51(2):137-46. doi: 10.1007/s00248-005-0049-7. Epub 2006 Jan 31.
10
Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency.
Appl Environ Microbiol. 2005 Sep;71(9):5551-9. doi: 10.1128/AEM.71.9.5551-5559.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验