Suppr超能文献

原生动物摄食对细菌浮游生物组合中分裂细胞频率的影响。

Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages.

机构信息

College of Oceanography, Oregon State University, Oceanography Administration Building 104, Corvallis, Oregon 97331-5503, and University of Georgia Marine Institute, Sapelo Island, Georgia 31327.

出版信息

Appl Environ Microbiol. 1992 Aug;58(8):2381-5. doi: 10.1128/aem.58.8.2381-2385.1992.

Abstract

Grazing by phagotrophic flagellates and ciliates is a major source of mortality for bacterioplankton in both marine and freshwater systems. Recent studies have demonstrated a positive relationship between clearance rate and prey size for bacterivorous protists. We tested the idea that, by selectively grazing the larger (more actively growing or dividing) cells in a bacterial assemblage, protists control bacterial standing stock abundances by directly cropping bacterial production. Samples of estuarine water were passed through 0.8-mum-pore-size filters (bacteria only) or 20-mum-mesh screens (bacteria and bacterivorous protists) and placed in dialysis tubing suspended in 7 liters of unfiltered water. Changes in total bacterial biovolume per milliliter (bacterial biomass), frequency of dividing cells (FDC), and average per cell biovolume were followed over a period of 24 h. In three experiments, the FDC increased more rapidly and attained higher values in water passed through 0.8-mum-pore-size filters (average, 5.1 to 8.9%; maximum, 15.5%) compared with FDC values in water passed through 20-mum-mesh screens (average, 2.7 to 5.3%; maximum, 6.7%). Increases in bacterial biomass per milliliter lagged behind increases in FDC by about 4 to 6 h. Grazed bacterial assemblages were characterized by lower total biomasses and smaller average cell sizes compared with those of cells in nongrazed assemblages. We conclude that bacterivorous protists control bacterial standing stock abundances partly by preferentially removing dividing cells. Selective grazing of the more actively growing cells may also explain, in part, the ability of slow-growing cells to persist in bacterioplankton assemblages.

摘要

吞噬性鞭毛虫和纤毛虫的摄食是海洋和淡水系统中细菌浮游生物的主要死亡原因。最近的研究表明,对于噬菌的原生动物,清除率与猎物大小之间存在正相关关系。我们检验了这样一种观点,即通过选择性地摄食细菌聚集体中较大的(更活跃生长或分裂的)细胞,原生动物可以通过直接收获细菌的生产力来控制细菌的生物量。将河口水样通过 0.8μm 孔径的滤膜(仅细菌)或 20μm 网孔的筛网(细菌和噬菌的原生动物),然后将其置于悬挂在 7 升未过滤水中的透析管中。在 24 小时的时间内,每毫升总细菌生物量(细菌生物量)、分裂细胞的频率(FDC)和平均每个细胞的生物量变化。在三个实验中,与通过 20μm 网孔的筛网的水(平均,2.7 至 5.3%;最大,6.7%)相比,通过 0.8μm 孔径的滤膜的水的 FDC 增加得更快,达到更高的值(平均,5.1 至 8.9%;最大,15.5%)。细菌生物量的增加滞后于 FDC 的增加约 4 至 6 小时。与未被摄食的聚集体相比,被摄食的细菌聚集体的总生物量较低,平均细胞尺寸较小。我们的结论是,噬菌原生动物通过优先去除分裂细胞来部分控制细菌的生物量。对更活跃生长的细胞的选择性摄食也可能部分解释了缓慢生长的细胞能够在细菌浮游生物聚集体中持续存在的原因。

相似文献

1
Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages.
Appl Environ Microbiol. 1992 Aug;58(8):2381-5. doi: 10.1128/aem.58.8.2381-2385.1992.
2
Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates.
Appl Environ Microbiol. 1990 Mar;56(3):583-9. doi: 10.1128/aem.56.3.583-589.1990.
3
Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs.
Microb Ecol. 1994 Sep;28(2):223-35. doi: 10.1007/BF00166812.
5
Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates.
Appl Environ Microbiol. 1992 Nov;58(11):3715-20. doi: 10.1128/aem.58.11.3715-3720.1992.
6
Protistan grazing in a meromictic freshwater lake with anoxic bottom water.
FEMS Microbiol Ecol. 2014 Mar;87(3):691-703. doi: 10.1111/1574-6941.12257. Epub 2013 Dec 5.
7
Bacterivory rate estimates and fraction of active bacterivores in natural protist assemblages from aquatic systems.
Appl Environ Microbiol. 1999 Apr;65(4):1463-9. doi: 10.1128/AEM.65.4.1463-1469.1999.
9
Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton.
Appl Environ Microbiol. 1987 Jun;53(6):1298-303. doi: 10.1128/aem.53.6.1298-1303.1987.
10
Protozoan Bacterivory in the Ice and the Water Column of a Cold Temperate Lagoon.
Microb Ecol. 1999 Feb;37(2):95-106. doi: 10.1007/s002489900134.

引用本文的文献

1
Selective cell lysis pressure on rare and abundant prokaryotic taxa across a shelf-to-slope continuum in the Northern South China Sea.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0139323. doi: 10.1128/aem.01393-23. Epub 2023 Nov 28.
2
Experimental identification and in silico prediction of bacterivory in green algae.
ISME J. 2021 Jul;15(7):1987-2000. doi: 10.1038/s41396-021-00899-w. Epub 2021 Mar 2.
3
Divergence of compost extract and bio-organic manure effects on lucerne plant and soil.
PeerJ. 2017 Sep 6;5:e3775. doi: 10.7717/peerj.3775. eCollection 2017.
5
Linking internal and external bacterial community control gives mechanistic framework for pelagic virus-to-bacteria ratios.
Environ Microbiol. 2016 Nov;18(11):3932-3948. doi: 10.1111/1462-2920.13391. Epub 2016 Jul 5.
7
8
An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters.
Environ Sci Pollut Res Int. 2015 Aug;22(16):12544-58. doi: 10.1007/s11356-015-4497-4. Epub 2015 Apr 25.
9
Optimal defense strategies in an idealized microbial food web under trade-off between competition and defense.
PLoS One. 2014 Jul 7;9(7):e101415. doi: 10.1371/journal.pone.0101415. eCollection 2014.
10
Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs.
Microb Ecol. 1994 Sep;28(2):223-35. doi: 10.1007/BF00166812.

本文引用的文献

1
Viruses as partners in spring bloom microbial trophodynamics.
Appl Environ Microbiol. 1990 May;56(5):1400-5. doi: 10.1128/aem.56.5.1400-1405.1990.
2
Frequency of dividing cells as an estimator of bacterial productivity.
Appl Environ Microbiol. 1981 Jul;42(1):23-31. doi: 10.1128/aem.42.1.23-31.1981.
3
Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments.
Appl Environ Microbiol. 1979 May;37(5):805-12. doi: 10.1128/aem.37.5.805-812.1979.
4
Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates.
Appl Environ Microbiol. 1990 Mar;56(3):583-9. doi: 10.1128/aem.56.3.583-589.1990.
5
Use of nuclepore filters for counting bacteria by fluorescence microscopy.
Appl Environ Microbiol. 1977 May;33(5):1225-8. doi: 10.1128/aem.33.5.1225-1228.1977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验