Suppr超能文献

北极圈湖泊中蓝藻水华(鱼腥藻)对溶解态氮的吸收。

Dissolved Nitrogen Uptake by a Cyanobacterial Bloom (Anabaena flos-aquae) in a Subarctic Lake.

机构信息

Institute of Marine Science, School of Fisheries and Ocean Sciences, University of Alaska at Fairbanks, Fairbanks, Alaska 99775-1080.

出版信息

Appl Environ Microbiol. 1993 Feb;59(2):422-30. doi: 10.1128/aem.59.2.422-430.1993.

Abstract

Uptake of dissolved nitrogen (NH(4) + NO(3) + urea + N(2)) by a cyanobacterial [Anabaena flos-aquae (Lyngb.)] De Brèb population in Smith Lake, Alaska, was measured every 2 to 4 days during the spring of 1990. Total dissolved nitrogen uptake ranged from 0.34 to 24.75 mumol liter h, with a mean of 5.75 mumol liter h; the euphotic zone accounted for 91% of the uptake. The mean turnover time for dissolved combined nitrogen (NH(4) + NO(3) + urea) in the euphotic zone was less than 14 h, and that for NH(4) was only 3.6 h. The mean relative preference indices for NH(4) (2.4), NO(3) (0.4), and urea (0.5) established NH(4) as the preferred nitrogenous nutrient. The uptake rates were apparently dependent on biomass, temperature, and light. Regeneration, probably due to zooplankton excretion and bacterial remineralization of dissolved organic nitrogen, was the main source of NH(4) for the cyanobacterial growth. The high half-saturation constant for NH(4) with low ambient NH(4) concentration nevertheless resulted in the simultaneous utilization of several forms of nitrogen.

摘要

1990 年春季,每 2 至 4 天测量一次阿拉斯加史密斯湖蓝藻(鱼腥藻属(Lyngb.))种群对溶解态氮(NH(4) + NO(3) + 尿素 + N(2))的吸收。总溶解态氮吸收范围为 0.34 至 24.75 umol 升 h,平均值为 5.75 umol 升 h;真光层占吸收的 91%。真光层中溶解态结合氮(NH(4) + NO(3) + 尿素)的平均周转率小于 14 h,而 NH(4)的周转率仅为 3.6 h。NH(4)(2.4)、NO(3)(0.4)和尿素(0.5)的平均相对偏好指数确立了 NH(4)作为首选含氮营养物。吸收速率显然取决于生物量、温度和光照。再生,可能是由于浮游动物排泄和溶解有机氮的细菌再矿化,是蓝藻生长的 NH(4)的主要来源。尽管 NH(4)的半饱和常数较高,环境中 NH(4)浓度较低,但仍导致同时利用了几种形式的氮。

相似文献

1
Dissolved Nitrogen Uptake by a Cyanobacterial Bloom (Anabaena flos-aquae) in a Subarctic Lake.
Appl Environ Microbiol. 1993 Feb;59(2):422-30. doi: 10.1128/aem.59.2.422-430.1993.
3
Using stable isotope labeling to study the nitrogen metabolism in Anabaena flos-aquae growth and anatoxin biosynthesis.
Water Res. 2017 Dec 15;127:223-229. doi: 10.1016/j.watres.2017.09.060. Epub 2017 Oct 6.
4
Biological activities and nitrogen and phosphorus removal during the anabaena flos-aquae biofilm growth using different nutrient form.
Bioresour Technol. 2018 Mar;251:7-12. doi: 10.1016/j.biortech.2017.12.003. Epub 2017 Dec 6.
5
Interspecific competition between Microcystis aeruginosa and Anabaena flos-aquae from Taihu Lake, China.
Z Naturforsch C J Biosci. 2014 Jan-Feb;69(1-2):53-60. doi: 10.5560/znc.2012-0155.
6
A Zoogloea sp. associated with blooms of Anabaena flos-aquae.
Can J Microbiol. 1978 Aug;24(8):922-31. doi: 10.1139/m78-154.
7
Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland).
Environ Toxicol Chem. 2010 Mar;29(3):556-60. doi: 10.1002/etc.86.
9
Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession.
Harmful Algae. 2019 Apr;84:46-55. doi: 10.1016/j.hal.2019.02.007. Epub 2019 Mar 16.
10
Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China).
Appl Microbiol Biotechnol. 2017 Feb;101(4):1685-1696. doi: 10.1007/s00253-016-7968-8. Epub 2016 Nov 15.

引用本文的文献

2
Critical nutrient thresholds needed to control eutrophication and synergistic interactions between phosphorus and different nitrogen sources.
Environ Sci Pollut Res Int. 2016 Oct;23(20):21008-21019. doi: 10.1007/s11356-016-7321-x. Epub 2016 Aug 4.
3
Interactions between snow chemistry, mercury inputs and microbial population dynamics in an Arctic snowpack.
PLoS One. 2013 Nov 25;8(11):e79972. doi: 10.1371/journal.pone.0079972. eCollection 2013.
5
Stable Carbon Isotope Evidence for Atmospheric CO(inf2) Uptake by Cyanobacterial Surface Scums in a Eutrophic Lake.
Appl Environ Microbiol. 1996 May;62(5):1803-4. doi: 10.1128/aem.62.5.1803-1804.1996.

本文引用的文献

1
Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters.
Science. 1979 Feb 16;203(4381):670-2. doi: 10.1126/science.203.4381.670.
2
Herbivores' direct and indirect effects on algal populations.
Science. 1986 Feb 7;231(4738):605-7. doi: 10.1126/science.231.4738.605.
4
Aquatic acetylene-reduction techniques: solutions to several problems.
Can J Microbiol. 1976 Jan;22(1):43-51. doi: 10.1139/m76-006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验