Suppr超能文献

大麦根际模型系统中微生物耗氧的微梯度。

Microgradients of microbial oxygen consumption in a barley rhizosphere model system.

机构信息

Microbiology Section, Department of Ecology and Molecular Biology, The Royal Veterinary and Agricultural University, Rolighedsvej 21, DK-1958 Frederiksberg C, Denmark.

出版信息

Appl Environ Microbiol. 1993 Feb;59(2):431-7. doi: 10.1128/aem.59.2.431-437.1993.

Abstract

A microelectrode technique was used to map the radial distribution of oxygen concentrations and oxygen consumption rates around single roots of 7-day-old barley seedlings. The seedlings were grown in gel-stabilized medium containing a nutrient solution, a soil extract, and an inert polymer. Oxygen consumption by microbial respiration in the rhizosphere (<5 mm from the root) and in bulk medium (>30 mm from the root) was determined by using Fick's laws of diffusion and an analytical approach with curve fitting to measured microprofiles of oxygen concentration. A marked increase of microbial respiration was observed in the inner 0- to 3-mm-thick, concentric zone around the root (rhizosphere). The volume-specific oxygen consumption rate (specific activity) was thus 30 to 60 times higher in the innermost 0 to 0.01 mm (rhizoplane) than in the bulk medium. The oxygen consumption rate in the root tissue was in turn 10 to 30 times higher than that in the rhizoplane. Both microbial respiration and oxygen uptake by the root varied between different roots. This was probably due to a between-root variation of the exudation rate for easily degradable carbon compounds supporting the microbial oxygen consumption.

摘要

采用微电极技术绘制了 7 天大的大麦幼苗单根周围氧浓度和耗氧率的径向分布。幼苗在含有营养液、土壤提取物和惰性聚合物的凝胶稳定培养基中生长。通过扩散的菲克定律和对测量的氧浓度微观分布进行曲线拟合的分析方法,确定了根际(距根<5 毫米)和主体介质(距根>30 毫米)中微生物呼吸作用的耗氧量。在根(根际)周围 0-3 毫米厚的同心区内,观察到微生物呼吸作用明显增加。因此,最内层 0 到 0.01 毫米(根面)的比体积氧耗率(比活性)比主体介质高 30 到 60 倍。而根组织的耗氧率又比根面高 10 到 30 倍。微生物呼吸作用和根的耗氧都在不同的根之间变化。这可能是由于可降解碳化合物的分泌率在根之间存在差异,这些碳化合物支持微生物的耗氧。

相似文献

1
Microgradients of microbial oxygen consumption in a barley rhizosphere model system.
Appl Environ Microbiol. 1993 Feb;59(2):431-7. doi: 10.1128/aem.59.2.431-437.1993.
5
Root hairs increase rhizosphere extension and carbon input to soil.
Ann Bot. 2018 Jan 25;121(1):61-69. doi: 10.1093/aob/mcx127.
9
Responses of Alnus glutinosa to anaerobic conditions--mechanisms and rate of oxygen flux into the roots.
Plant Biol (Stuttg). 2006 Mar;8(2):212-23. doi: 10.1055/s-2005-873041.
10
Roots shaping their microbiome: global hotspots for microbial activity.
Annu Rev Phytopathol. 2015;53:403-24. doi: 10.1146/annurev-phyto-082712-102342.

引用本文的文献

1
Root phenotypes as modulators of microbial microhabitats.
Front Plant Sci. 2022 Sep 23;13:1003868. doi: 10.3389/fpls.2022.1003868. eCollection 2022.
4
Niche differentiation is spatially and temporally regulated in the rhizosphere.
ISME J. 2020 Apr;14(4):999-1014. doi: 10.1038/s41396-019-0582-x. Epub 2020 Jan 17.
5
Engineering rhizobial bioinoculants: a strategy to improve iron nutrition.
ScientificWorldJournal. 2013 Nov 6;2013:315890. doi: 10.1155/2013/315890.
6
Diversity and community structure of Archaea inhabiting the rhizoplane of two contrasting plants from an acidic bog.
Microb Ecol. 2010 May;59(4):757-67. doi: 10.1007/s00248-009-9628-3. Epub 2009 Dec 22.
7
Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare).
Plant Cell Rep. 2007 Oct;26(10):1773-83. doi: 10.1007/s00299-007-0393-9. Epub 2007 Jun 14.
8
A biological sensor for iron available to bacteria in their habitats on plant surfaces.
Appl Environ Microbiol. 1994 Jun;60(6):1934-41. doi: 10.1128/aem.60.6.1934-1941.1994.
9
Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity.
Appl Environ Microbiol. 1997 Nov;63(11):4621-4. doi: 10.1128/aem.63.11.4621-4624.1997.
10
Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil.
Appl Environ Microbiol. 2001 Jun;67(6):2627-35. doi: 10.1128/AEM.67.6.2627-2635.2001.

本文引用的文献

2
N Kinetic Analysis of N(2)O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification.
Appl Environ Microbiol. 1985 May;49(5):1134-41. doi: 10.1128/aem.49.5.1134-1141.1985.
4
Production of NO(2) and N(2)O by Nitrifying Bacteria at Reduced Concentrations of Oxygen.
Appl Environ Microbiol. 1980 Sep;40(3):526-32. doi: 10.1128/aem.40.3.526-532.1980.
5
Denitrification.
Microbiol Rev. 1982 Mar;46(1):43-70. doi: 10.1128/mr.46.1.43-70.1982.
6
Aquatic nitrogen transformations at low oxygen concentrations.
Appl Environ Microbiol. 1988 Jan;54(1):172-5. doi: 10.1128/aem.54.1.172-175.1988.
7
Nitrate and nitrite microgradients in barley rhizosphere as detected by a highly sensitive denitrification bioassay.
Appl Environ Microbiol. 1992 Aug;58(8):2375-80. doi: 10.1128/aem.58.8.2375-2380.1992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验