Suppr超能文献

用荧光染色沉积物测定自由附着沉积物细菌的底栖原生动物摄食率。

Rates of benthic protozoan grazing on free and attached sediment bacteria measured with fluorescently stained sediment.

机构信息

Centre for Limnology, Netherlands Institute of Ecology, 3631 AC Nieuwersluis, The Netherlands.

出版信息

Appl Environ Microbiol. 1994 Jul;60(7):2259-64. doi: 10.1128/aem.60.7.2259-2264.1994.

Abstract

In order to determine the importance of benthic protozoa as consumers of bacteria, grazing rates have been measured by using monodispersed fluorescently labeled bacteria (FLB). However, high percentages of nongrazing benthic protists are reported in the literature. These are related to serious problems of the monodispersed FLB method. We describe a new method using 5-(4,6-dichlorotriazin-2-yl)-aminofluorescein (DTAF)-stained sediment to measure in situ bacterivory by benthic protists. This method is compared with the monodispersed FLB technique. Our estimates of benthic bacterivory range from 61 to 73 bacteria protist h and are about twofold higher than the results of the monodispersed FLB method. The number of nongrazing protists after incubation for 15 min with DTAF-stained sediment is in agreement with theoretical expectation. We also tested the relative affinity for FLB of protists and discuss the results with respect to a grazing model.

摘要

为了确定底栖原生动物作为细菌消费者的重要性,人们已经使用单分散荧光标记细菌(FLB)测量了摄食率。然而,文献中报道了高比例的非摄食底栖原生动物。这些与单分散 FLB 方法的严重问题有关。我们描述了一种使用 5-(4,6-二氯三嗪-2-基)-氨基荧光素(DTAF)染色沉积物的新方法,用于测量底栖原生动物的原位细菌摄食率。该方法与单分散 FLB 技术进行了比较。我们对底栖细菌摄食率的估计范围为 61 到 73 个细菌原生动物 h,比单分散 FLB 方法的结果高约两倍。用 DTAF 染色沉积物孵育 15 分钟后,非摄食原生动物的数量与理论预期相符。我们还测试了原生动物对 FLB 的相对亲和力,并根据摄食模型讨论了结果。

相似文献

1
Rates of benthic protozoan grazing on free and attached sediment bacteria measured with fluorescently stained sediment.
Appl Environ Microbiol. 1994 Jul;60(7):2259-64. doi: 10.1128/aem.60.7.2259-2264.1994.
2
Bacterivory rate estimates and fraction of active bacterivores in natural protist assemblages from aquatic systems.
Appl Environ Microbiol. 1999 Apr;65(4):1463-9. doi: 10.1128/AEM.65.4.1463-1469.1999.
3
Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory.
Appl Environ Microbiol. 1987 May;53(5):958-65. doi: 10.1128/aem.53.5.958-965.1987.
5
Rates of microbenthic and meiobenthic bacterivory in a temperate muddy tidal flat community.
Appl Environ Microbiol. 1992 Aug;58(8):2426-31. doi: 10.1128/aem.58.8.2426-2431.1992.
6
Benthic bacterial production and protozoan predation in a silty freshwater environment.
Microb Ecol. 2003 Jul;46(1):62-72. doi: 10.1007/s00248-002-2040-x. Epub 2003 May 13.
7
Protozoan Bacterivory in the Ice and the Water Column of a Cold Temperate Lagoon.
Microb Ecol. 1999 Feb;37(2):95-106. doi: 10.1007/s002489900134.
8
Detection of ingested bacteria in benthic ciliates using fluorescence in situ hybridization.
Syst Appl Microbiol. 2003 Nov;26(4):624-30. doi: 10.1078/072320203770865936.
9
Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season.
Braz J Microbiol. 2014 May 19;45(1):143-51. doi: 10.1590/s1517-83822014000100020. eCollection 2014.

引用本文的文献

2
Dynamics of natural prokaryotes, viruses, and heterotrophic nanoflagellates in alpine karstic groundwater.
Microbiologyopen. 2013 Aug;2(4):633-43. doi: 10.1002/mbo3.98. Epub 2013 Jul 4.
3
Effects of deposit-feeding macrofauna on benthic bacteria, viruses, and protozoa in a silty freshwater sediment.
Microb Ecol. 2008 Jul;56(1):1-12. doi: 10.1007/s00248-007-9318-y. Epub 2007 Sep 19.
4
An inhibitor-based method to measure initial decomposition of naturally occurring polysaccharides in sediments.
Appl Environ Microbiol. 1995 Jun;61(6):2186-92. doi: 10.1128/aem.61.6.2186-2192.1995.
5
Benthic bacterial production and protozoan predation in a silty freshwater environment.
Microb Ecol. 2003 Jul;46(1):62-72. doi: 10.1007/s00248-002-2040-x. Epub 2003 May 13.
6
Interception of small particles by flocculent structures, sessile ciliates, and the basic layer of a wastewater biofilm.
Appl Environ Microbiol. 2001 Sep;67(9):4286-92. doi: 10.1128/AEM.67.9.4286-4292.2001.
8
Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer.
Appl Environ Microbiol. 1998 Feb;64(2):618-25. doi: 10.1128/AEM.64.2.618-625.1998.

本文引用的文献

1
Do bacteria-sized marine eukaryotes consume significant bacterial production?
Science. 1984 Jun 15;224(4654):1257-60. doi: 10.1126/science.224.4654.1257.
2
Quantitative centrifugation to extract benthic protozoa from freshwater sediments.
Appl Environ Microbiol. 1994 Jan;60(1):167-73. doi: 10.1128/aem.60.1.167-173.1994.
3
Rates of microbenthic and meiobenthic bacterivory in a temperate muddy tidal flat community.
Appl Environ Microbiol. 1992 Aug;58(8):2426-31. doi: 10.1128/aem.58.8.2426-2431.1992.
5
Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures.
Appl Environ Microbiol. 1988 Dec;54(12):3113-21. doi: 10.1128/aem.54.12.3113-3121.1988.
6
Aggregated and free bacteria as food sources for heterotrophic microflagellates.
Appl Environ Microbiol. 1988 Feb;54(2):613-6. doi: 10.1128/aem.54.2.613-616.1988.
8
Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory.
Appl Environ Microbiol. 1987 May;53(5):958-65. doi: 10.1128/aem.53.5.958-965.1987.
9
Fixation, counting, and manipulation of heterotrophic nanoflagellates.
Appl Environ Microbiol. 1986 Dec;52(6):1266-72. doi: 10.1128/aem.52.6.1266-1272.1986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验