Suppr超能文献

原生动物摄食、细菌活性和两段连续培养中的矿化作用。

Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures.

机构信息

Limnological Institute, Vijverhof Laboratory, 3631 AC Nieuwersluis, The Netherlands.

出版信息

Appl Environ Microbiol. 1988 Dec;54(12):3113-21. doi: 10.1128/aem.54.12.3113-3121.1988.

Abstract

In two-stage continuous cultures, at bacterial concentrations, biovolumes, and growth rates similar to values found in Lake Vechten, ingestion rates of heterotrophic nanoflagellates (HNAN) increased from 2.3 bacteria HNAN . h at a growth rate of 0.15 day to 9.2 bacteria . HNAN . h at a growth rate of 0.65 day. On a yeast extract medium with a C/N/P ratio of 100:15:1.2 (Redfield ratio), a mixed bacterial population showed a yield of 18% (C/C) and a specific carbon content of 211 fg of C . mum. The HNAN carbon content and yield were estimated at 127 fg of C . mum and 47% (C/C). Although P was not growth limiting, HNAN accelerated the mineralization of PO(4)-P from dissolved organic matter by 600%. The major mechanism of P remineralization appeared to be direct consumption of bacteria by HNAN. N mineralization was performed mainly (70%) by bacteria but was increased 30% by HNAN. HNAN did not enhance the decomposition of the relatively mineral-rich dissolved organic matter. An accelerated decomposition of organic carbon by protozoa may be restricted to mineral-poor substrates and may be explained mainly by protozoan nutrient regeneration. Growth and grazing in the cultures were compared with methods for in situ estimates. Thymidine incorporation by actively growing bacteria yielded an empirical conversion factor of 1.1 x 10 bacteria per mol of thymidine incorporated into DNA. However, nongrowing bacteria also showed considerable incorporation. Protozoan grazing was found to be accurately measured by uptake of fluorescently labeled bacteria, whereas artificial fluorescent microspheres were not ingested, and selective prokaryotic inhibitors blocked not only bacterial growth but also protozoan grazing.

摘要

在两阶段连续培养中,在细菌浓度、生物体积和生长速率与维赫滕湖相似的情况下,异养微型鞭毛虫(HNAN)的摄食率从 0.15 天的 2.3 个细菌 HNAN. h 增加到 0.65 天的 9.2 个细菌. HNAN. h。在酵母提取物培养基中,C/N/P 比为 100:15:1.2(Redfield 比),混合细菌种群的产量为 18%(C/C),特定碳含量为 211 fg 的 C. mum。HNAN 的碳含量和产量估计为 127 fg 的 C. mum 和 47%(C/C)。尽管 P 不是生长限制因素,但 HNAN 使溶解有机物质中的 PO(4)-P 矿化速度加快了 600%。P 再矿化的主要机制似乎是 HNAN 直接消耗细菌。N 矿化主要由细菌进行(70%),但 HNAN 增加了 30%。HNAN 并没有促进相对富含矿物质的溶解有机物的分解。原生动物对有机碳的加速分解可能仅限于矿物质含量低的基质,主要可以通过原生动物的营养再生来解释。培养物中的生长和摄食与原位估计方法进行了比较。通过活跃生长的细菌掺入胸苷的方法得出了一个经验转换因子,即 1.1 x 10 个细菌掺入 DNA 中的胸苷摩尔数。然而,非生长细菌也显示出相当大的掺入量。通过摄取荧光标记的细菌,可以准确测量原生动物的摄食,而人工荧光微球则不会被摄取,并且选择性的原核抑制剂不仅阻断了细菌的生长,还阻断了原生动物的摄食。

相似文献

1
Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures.
Appl Environ Microbiol. 1988 Dec;54(12):3113-21. doi: 10.1128/aem.54.12.3113-3121.1988.
3
Microbial dynamics and flagellate grazing during transition to winter in Lakes Hoare and Bonney, Antarctica.
FEMS Microbiol Ecol. 2012 Nov;82(2):449-58. doi: 10.1111/j.1574-6941.2012.01423.x. Epub 2012 Jun 25.
5
DNA Synthesis and Tritiated Thymidine Incorporation by Heterotrophic Freshwater Bacteria in Continuous Culture.
Appl Environ Microbiol. 1991 Jun;57(6):1675-1682. doi: 10.1128/aem.57.6.1675-1682.1991.
6
Fixation, counting, and manipulation of heterotrophic nanoflagellates.
Appl Environ Microbiol. 1986 Dec;52(6):1266-72. doi: 10.1128/aem.52.6.1266-1272.1986.
8
Protozoan grazing increases mineralization of naphthalene in marine sediment.
Microb Ecol. 2006 May;51(4):460-9. doi: 10.1007/s00248-006-9058-4. Epub 2006 Apr 28.
9
Fate of heterotrophic bacteria in Lake Tanganyika (East Africa).
FEMS Microbiol Ecol. 2007 Dec;62(3):354-64. doi: 10.1111/j.1574-6941.2007.00396.x. Epub 2007 Nov 5.
10
Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community.
Microb Ecol. 2003 May;45(4):384-98. doi: 10.1007/s00248-003-2000-0. Epub 2003 Apr 22.

引用本文的文献

2
Functional Ecology of Two Contrasting Freshwater Ciliated Protists in Relation to Temperature.
J Eukaryot Microbiol. 2021 Jan;68(1):e12823. doi: 10.1111/jeu.12823. Epub 2020 Dec 27.
3
Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.
Microbes Environ. 2016 Sep 29;31(3):279-87. doi: 10.1264/jsme2.ME16067. Epub 2016 Jul 12.
4
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer.
ISME J. 2015 Feb;9(2):333-46. doi: 10.1038/ismej.2014.128. Epub 2014 Aug 1.
7
Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater.
ISME J. 2013 Jul;7(7):1286-98. doi: 10.1038/ismej.2013.20. Epub 2013 Feb 28.
8
Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage.
Appl Environ Microbiol. 1997 Feb;63(2):596-601. doi: 10.1128/aem.63.2.596-601.1997.

本文引用的文献

1
Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton.
Appl Environ Microbiol. 1987 Jun;53(6):1298-303. doi: 10.1128/aem.53.6.1298-1303.1987.
2
Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory.
Appl Environ Microbiol. 1987 May;53(5):958-65. doi: 10.1128/aem.53.5.958-965.1987.
3
Spatial and Temporal Variations in Bacterial Macromolecule Labeling with [methyl-H]Thymidine in a Hypertrophic Lake.
Appl Environ Microbiol. 1986 Dec;52(6):1368-73. doi: 10.1128/aem.52.6.1368-1373.1986.
4
Fixation, counting, and manipulation of heterotrophic nanoflagellates.
Appl Environ Microbiol. 1986 Dec;52(6):1266-72. doi: 10.1128/aem.52.6.1266-1272.1986.
5
Bacterial biovolume and biomass estimations.
Appl Environ Microbiol. 1985 Jun;49(6):1488-93. doi: 10.1128/aem.49.6.1488-1493.1985.
6
Measurements of diel rates of bacterial secondary production in aquatic environments.
Appl Environ Microbiol. 1984 Apr;47(4):632-8. doi: 10.1128/aem.47.4.632-638.1984.
7
Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria.
Appl Environ Microbiol. 1983 Apr;45(4):1196-201. doi: 10.1128/aem.45.4.1196-1201.1983.
8
Bacterial dry matter content and biomass estimations.
Appl Environ Microbiol. 1984 Oct;48(4):755-7. doi: 10.1128/aem.48.4.755-757.1984.
9
Continuous monoxenic culture of Tetrahymena pyriformis.
J Gen Microbiol. 1971 Apr;66(1):95-108. doi: 10.1099/00221287-66-1-95.
10
A simplified phosphorus analysis technique.
Environ Lett. 1975;9(1):43-53. doi: 10.1080/00139307509437455.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验