Suppr超能文献

通过反向样本基因组探测鉴定土壤中的烃类降解细菌。

Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing.

机构信息

Department of Biological Sciences, The University of Calgary, Calgary, Alberta, Canada T2N 1N4, and NOVA Research and Technology Centre, Calgary, Alberta, Canada T2E 7K7.

出版信息

Appl Environ Microbiol. 1998 Feb;64(2):637-45. doi: 10.1128/AEM.64.2.637-645.1998.

Abstract

Bacteria with limited genomic cross-hybridization were isolated from soil contaminated with C5+, a mixture of hydrocarbons, and identified by partial 16S rRNA sequencing. Filters containing denatured genomic DNAs were used in a reverse sample genome probe (RSGP) procedure for analysis of the effect of an easily degradable compound (toluene) and a highly recalcitrant compound (dicyclopentadiene [DCPD]) on community composition. Hybridization with labeled total-community DNA isolated from soil exposed to toluene indicated enrichment of several Pseudomonas spp., which were subsequently found to be capable of toluene mineralization. Hybridization with labeled total-community DNA isolated from soil exposed to DCPD indicated enrichment of a Pseudomonas sp. or a Sphingomonas sp. These two bacteria appeared capable of producing oxygenated DCPD derivatives in the soil environment, but mineralization could not be shown. These results demonstrate that bacteria, which metabolize degradable or recalcitrant hydrocarbons, can be identified by the RSGP procedure.

摘要

从污染有 C5+(一种碳氢混合物)的土壤中分离出基因组交叉杂交有限的细菌,并通过部分 16S rRNA 测序进行鉴定。使用含有变性基因组 DNA 的过滤器进行反向样本基因组探针 (RSGP) 程序分析,以研究易降解化合物(甲苯)和高度难降解化合物(二环戊二烯[DCPD])对群落组成的影响。与从暴露于甲苯的土壤中分离出的标记总群落 DNA 的杂交表明,几种假单胞菌属的富集,随后发现它们能够甲苯矿化。与从暴露于 DCPD 的土壤中分离出的标记总群落 DNA 的杂交表明,假单胞菌属或鞘氨醇单胞菌属的富集。这两种细菌似乎能够在土壤环境中产生含氧 DCPD 衍生物,但不能证明其矿化作用。这些结果表明,能够代谢可降解或难降解碳氢化合物的细菌可以通过 RSGP 程序进行鉴定。

相似文献

1
Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing.
Appl Environ Microbiol. 1998 Feb;64(2):637-45. doi: 10.1128/AEM.64.2.637-645.1998.
2
Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons.
Appl Environ Microbiol. 2000 Dec;66(12):5282-9. doi: 10.1128/AEM.66.12.5282-5289.2000.
3
Microbial community composition at an ethane pyrolysis plant site at different hydrocarbon inputs.
FEMS Microbiol Ecol. 2002 Jun 1;40(3):233-41. doi: 10.1111/j.1574-6941.2002.tb00956.x.
4
Composition of toluene-degrading microbial communities from soil at different concentrations of toluene.
Appl Environ Microbiol. 1999 Jul;65(7):3064-70. doi: 10.1128/AEM.65.7.3064-3070.1999.
5
Analysis of environmental microbial communities by reverse sample genome probing.
J Microbiol Methods. 2003 May;53(2):211-9. doi: 10.1016/s0167-7012(03)00024-1.
7
Biodegradation of C5+ hydrocarbons by a mixed bacterial consortium from a C(5+)-contaminated site.
Environ Technol. 2004 Mar;25(3):355-63. doi: 10.1080/09593330409355469.

引用本文的文献

1
Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing.
Mol Biotechnol. 2013 Jul;54(3):900-12. doi: 10.1007/s12033-012-9639-z.
2
A targeted real-time PCR assay for studying naphthalene degradation in the environment.
Microb Ecol. 2006 Oct;52(3):533-43. doi: 10.1007/s00248-006-9082-4. Epub 2006 Sep 30.
3
Recent advances in petroleum microbiology.
Microbiol Mol Biol Rev. 2003 Dec;67(4):503-49. doi: 10.1128/MMBR.67.4.503-549.2003.
4
Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons.
Appl Environ Microbiol. 2000 Dec;66(12):5282-9. doi: 10.1128/AEM.66.12.5282-5289.2000.
5
Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability.
Appl Environ Microbiol. 2000 Nov;66(11):4625-33. doi: 10.1128/AEM.66.11.4625-4633.2000.
6
Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR.
Appl Environ Microbiol. 2000 Feb;66(2):678-83. doi: 10.1128/AEM.66.2.678-683.2000.
7
Composition of toluene-degrading microbial communities from soil at different concentrations of toluene.
Appl Environ Microbiol. 1999 Jul;65(7):3064-70. doi: 10.1128/AEM.65.7.3064-3070.1999.

本文引用的文献

1
Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing.
Appl Environ Microbiol. 1997 May;63(5):1785-93. doi: 10.1128/aem.63.5.1785-1793.1997.
2
Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters.
Appl Environ Microbiol. 1993 Dec;59(12):4101-14. doi: 10.1128/aem.59.12.4101-4114.1993.
3
Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing.
Appl Environ Microbiol. 1992 Nov;58(11):3542-52. doi: 10.1128/aem.58.11.3542-3552.1992.
5
Microbial utilization of naturally occurring hydrocarbons at the guaymas basin hydrothermal vent site.
Appl Environ Microbiol. 1989 Nov;55(11):2832-6. doi: 10.1128/aem.55.11.2832-2836.1989.
6
Separation and purification of bacteria from soil.
Appl Environ Microbiol. 1985 Jun;49(6):1482-7. doi: 10.1128/aem.49.6.1482-1487.1985.
9
Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39.
Appl Environ Microbiol. 1996 Jan;62(1):230-6. doi: 10.1128/aem.62.1.230-236.1996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验