Suppr超能文献

一种用于隐马尔可夫模型的新解码算法改进了全β膜蛋白拓扑结构的预测。

A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins.

作者信息

Fariselli Piero, Martelli Pier Luigi, Casadio Rita

机构信息

Department of Biology, University of Bologna, via Irnerio 42, 40126 Bologna, Italy.

出版信息

BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S12. doi: 10.1186/1471-2105-6-S4-S12.

Abstract

BACKGROUND

Structure prediction of membrane proteins is still a challenging computational problem. Hidden Markov models (HMM) have been successfully applied to the problem of predicting membrane protein topology. In a predictive task, the HMM is endowed with a decoding algorithm in order to assign the most probable state path, and in turn the labels, to an unknown sequence. The Viterbi and the posterior decoding algorithms are the most common. The former is very efficient when one path dominates, while the latter, even though does not guarantee to preserve the HMM grammar, is more effective when several concurring paths have similar probabilities. A third good alternative is 1-best, which was shown to perform equal or better than Viterbi.

RESULTS

In this paper we introduce the posterior-Viterbi (PV) a new decoding which combines the posterior and Viterbi algorithms. PV is a two step process: first the posterior probability of each state is computed and then the best posterior allowed path through the model is evaluated by a Viterbi algorithm.

CONCLUSION

We show that PV decoding performs better than other algorithms when tested on the problem of the prediction of the topology of beta-barrel membrane proteins.

摘要

背景

膜蛋白的结构预测仍然是一个具有挑战性的计算问题。隐马尔可夫模型(HMM)已成功应用于预测膜蛋白拓扑结构的问题。在预测任务中,HMM被赋予一种解码算法,以便为未知序列分配最可能的状态路径,进而分配标签。维特比算法和后验解码算法是最常用的。当一条路径占主导时,前者非常高效,而后者虽然不能保证保留HMM语法,但当几条并发路径具有相似概率时更有效。第三个不错的选择是单最佳路径算法,它已被证明表现得与维特比算法相当或更好。

结果

在本文中,我们引入了后验 - 维特比(PV)算法,这是一种结合了后验算法和维特比算法的新解码算法。PV算法是一个两步过程:首先计算每个状态的后验概率,然后通过维特比算法评估通过模型的最佳后验允许路径。

结论

我们表明,在测试β桶状膜蛋白拓扑结构预测问题时,PV解码算法比其他算法表现更好。

相似文献

1
A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins.
BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S12. doi: 10.1186/1471-2105-6-S4-S12.
2
Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms.
Comput Biol Med. 2010 Jul;40(7):621-8. doi: 10.1016/j.compbiomed.2010.04.006. Epub 2010 May 21.
4
An HMM posterior decoder for sequence feature prediction that includes homology information.
Bioinformatics. 2005 Jun;21 Suppl 1:i251-7. doi: 10.1093/bioinformatics/bti1014.
5
HMMEditor: a visual editing tool for profile hidden Markov model.
BMC Genomics. 2008;9 Suppl 1(Suppl 1):S8. doi: 10.1186/1471-2164-9-S1-S8.
6
Implementing EM and Viterbi algorithms for Hidden Markov Model in linear memory.
BMC Bioinformatics. 2008 Apr 30;9:224. doi: 10.1186/1471-2105-9-224.
7
Transmembrane topology and signal peptide prediction using dynamic bayesian networks.
PLoS Comput Biol. 2008 Nov;4(11):e1000213. doi: 10.1371/journal.pcbi.1000213. Epub 2008 Nov 7.
8
9
Efficient decoding algorithms for generalized hidden Markov model gene finders.
BMC Bioinformatics. 2005 Jan 24;6:16. doi: 10.1186/1471-2105-6-16.
10
Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER.
BMC Bioinformatics. 2014 May 30;15:165. doi: 10.1186/1471-2105-15-165.

引用本文的文献

1
A new algorithm to train hidden Markov models for biological sequences with partial labels.
BMC Bioinformatics. 2021 Mar 26;22(1):162. doi: 10.1186/s12859-021-04080-0.
2
Highly parallel direct RNA sequencing on an array of nanopores.
Nat Methods. 2018 Mar;15(3):201-206. doi: 10.1038/nmeth.4577. Epub 2018 Jan 15.
3
SMCis: An Effective Algorithm for Discovery of Cis-Regulatory Modules.
PLoS One. 2016 Sep 16;11(9):e0162968. doi: 10.1371/journal.pone.0162968. eCollection 2016.
6
Algorithms for hidden markov models restricted to occurrences of regular expressions.
Biology (Basel). 2013 Nov 8;2(4):1282-95. doi: 10.3390/biology2041282.
7
MicroRNA target site identification by integrating sequence and binding information.
Nat Methods. 2013 Jul;10(7):630-3. doi: 10.1038/nmeth.2489. Epub 2013 May 26.
8
CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation.
Nucleic Acids Res. 2012 Jul;40(12):e93. doi: 10.1093/nar/gks235. Epub 2012 Mar 15.
9
A classification of bioinformatics algorithms from the viewpoint of maximizing expected accuracy (MEA).
J Comput Biol. 2012 May;19(5):532-49. doi: 10.1089/cmb.2011.0197. Epub 2012 Feb 7.
10
VitAL: Viterbi algorithm for de novo peptide design.
PLoS One. 2010 Jun 2;5(6):e10926. doi: 10.1371/journal.pone.0010926.

本文引用的文献

3
PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W400-4. doi: 10.1093/nar/gkh417.
4
Transmembrane proteins in the Protein Data Bank: identification and classification.
Bioinformatics. 2004 Nov 22;20(17):2964-72. doi: 10.1093/bioinformatics/bth340. Epub 2004 Jun 4.
5
Predicting transmembrane beta-barrels in proteomes.
Nucleic Acids Res. 2004 May 11;32(8):2566-77. doi: 10.1093/nar/gkh580. Print 2004.
6
In silico prediction of the structure of membrane proteins: is it feasible?
Brief Bioinform. 2003 Dec;4(4):341-8. doi: 10.1093/bib/4.4.341.
7
An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins.
Bioinformatics. 2003;19 Suppl 1:i205-11. doi: 10.1093/bioinformatics/btg1027.
8
A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins.
Comput Biol Chem. 2003 Feb;27(1):69-76. doi: 10.1016/s0097-8485(02)00051-7.
10
MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
Bioinformatics. 2003 Mar 1;19(4):500-5. doi: 10.1093/bioinformatics/btg023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验