Suppr超能文献

一种基于隐马尔可夫模型的预测β-桶状膜蛋白跨膜区域的方法。

A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins.

作者信息

Liu Qi, Zhu Yi-Sheng, Wang Bao-Hua, Li Yi-Xue

机构信息

Department of Biomedical Engineering, Shanghai Jiaotong University, People's Republic of China.

出版信息

Comput Biol Chem. 2003 Feb;27(1):69-76. doi: 10.1016/s0097-8485(02)00051-7.

Abstract

A novel method is developed to model and predict the transmembrane regions of beta-barrel membrane proteins. It is based on a Hidden Markov model (HMM) with architecture obeying those proteins' construction principles. The HMM is trained and tested on a non-redundant set of 11 beta-barrel membrane proteins known to date at atomic resolution with a jack-knife procedure. As a result, the method correctly locates 97% of 172 transmembrane beta-strands. Out of the 11 proteins, the barrel size for ten proteins and the overall topology for seven proteins are correctly predicted. Additionally, it successfully assigns the entire topology for two new beta-barrel membrane proteins that have no significant sequence homology to the 11 proteins. Predicted topology for two candidates for beta-barrel structure of the outer mitochondrial membrane is also presented in the paper.

摘要

一种用于对β-桶状膜蛋白的跨膜区域进行建模和预测的新方法被开发出来。它基于一个隐马尔可夫模型(HMM),其结构遵循这些蛋白质的构建原则。该HMM通过留一法程序在一组目前已知原子分辨率的11种非冗余β-桶状膜蛋白上进行训练和测试。结果,该方法正确定位了172条跨膜β链中的97%。在这11种蛋白质中,正确预测了10种蛋白质的桶状大小和7种蛋白质的整体拓扑结构。此外,它成功地为两种与这11种蛋白质没有显著序列同源性的新β-桶状膜蛋白确定了完整的拓扑结构。论文中还给出了线粒体外膜β-桶状结构的两个候选蛋白的预测拓扑结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验