Suppr超能文献

李关联器——一种用于渐进式记忆召回的混沌自联想网络。

Lee-Associator-a chaotic auto-associative network for progressive memory recalling.

作者信息

Lee Raymond S T

机构信息

Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

出版信息

Neural Netw. 2006 Jun;19(5):644-66. doi: 10.1016/j.neunet.2005.08.017. Epub 2005 Dec 13.

Abstract

In the past few decades, neural networks have been extensively adopted in various applications ranging from simple synaptic memory coding to sophisticated pattern recognition problems such as scene analysis and robot vision. Moreover, current studies on neuroscience and physiology have reported that in a typical scene segmentation problem our major senses of perception (e.g. vision, olfaction, etc.) are highly chaotic and involved non-linear neural dynamics and oscillations. In this paper, the author proposes an innovative chaotic neural oscillator-namely the Lee-oscillator (Lee's Chaotic Neural Oscillator) to provide a chaotic neural coding and information processing scheme. To illustrate the capability of Lee-oscillators upon pattern association, a chaotic auto-associative network, namely Lee-Associator (Lee's Chaotic Auto-associator) is constructed. Different from classical auto-associators such as the celebrated Hopfield network, which provides time-independent and static pattern association scheme, the Lee-Associator provides a remarkable progressive memory association scheme (what the author called 'Progressive Memory Recalling Scheme, PMRS') during the chaotic memory association. This is exactly consistent with the latest research in psychiatry and perception psychology on dynamic memory recalling schemes, as well as the implications and analogues to human perception as illustrated by the remarkable Rubin-vase experiment on visual psychology.

摘要

在过去几十年里,神经网络已被广泛应用于从简单的突触记忆编码到复杂的模式识别问题,如场景分析和机器人视觉等各种应用中。此外,目前关于神经科学和生理学的研究报告称,在典型的场景分割问题中,我们主要的感知觉(如视觉、嗅觉等)高度混乱,涉及非线性神经动力学和振荡。在本文中,作者提出了一种创新的混沌神经振荡器——即李氏振荡器(Lee氏混沌神经振荡器),以提供一种混沌神经编码和信息处理方案。为了说明李氏振荡器在模式关联方面的能力,构建了一个混沌自联想网络,即李氏联想器(Lee氏混沌自联想器)。与经典的自联想器(如著名的霍普菲尔德网络,它提供与时间无关的静态模式关联方案)不同,李氏联想器在混沌记忆关联过程中提供了一种显著的渐进式记忆关联方案(作者称之为“渐进式记忆回忆方案,PMRS”)。这与精神病学和感知心理学中关于动态记忆回忆方案的最新研究完全一致,也与视觉心理学中著名的鲁宾之杯实验所阐释的人类感知的含义和类比相一致。

相似文献

1
Lee-Associator-a chaotic auto-associative network for progressive memory recalling.
Neural Netw. 2006 Jun;19(5):644-66. doi: 10.1016/j.neunet.2005.08.017. Epub 2005 Dec 13.
2
A transient-chaotic autoassociative network (TCAN) based on Lee oscillators.
IEEE Trans Neural Netw. 2004 Sep;15(5):1228-43. doi: 10.1109/TNN.2004.832729.
3
Application of neural network to humanoid robots-development of co-associative memory model.
Neural Netw. 2005 Jun-Jul;18(5-6):666-73. doi: 10.1016/j.neunet.2005.06.021.
4
Threshold control of chaotic neural network.
Neural Netw. 2008 Mar-Apr;21(2-3):114-21. doi: 10.1016/j.neunet.2007.12.004. Epub 2007 Dec 8.
5
Chaotic pattern transitions in pulse neural networks.
Neural Netw. 2007 Sep;20(7):781-90. doi: 10.1016/j.neunet.2007.06.002. Epub 2007 Jul 6.
6
Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
Neural Netw. 2009 Sep;22(7):949-57. doi: 10.1016/j.neunet.2009.04.002. Epub 2009 Apr 22.
7
Controlling chaos in a chaotic neural network.
Neural Netw. 2003 Oct;16(8):1195-200. doi: 10.1016/S0893-6080(03)00055-8.
8
Itinerant memory dynamics and global bifurcations in chaotic neural networks.
Chaos. 2003 Sep;13(3):1122-32. doi: 10.1063/1.1601912.
9
Pattern recall in networks of chaotic neurons.
Biosystems. 2007 Feb;87(2-3):267-74. doi: 10.1016/j.biosystems.2006.09.022. Epub 2006 Sep 10.
10
Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture.
Neural Netw. 2009 Dec;22(10):1411-8. doi: 10.1016/j.neunet.2009.03.009. Epub 2009 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验